São os ‘likes’ os novos favoritos do twitter?

São os 'likes' os novos favoritos do twitter?

O twitter parece apostado em mudar o seu modelo de rede social. A última novidade parece ser a alteração da designação dos favoritos para likes ou stars ao género do Facebook.

A palavra favorito tem um caracter utilitário, à semelhança do do delicious (e todos sabemos o que é que o Yahoo fez ao delicious). Eu muitas vezes utilizo os favoritos do twitter nesse sentido de querer preservar um tweet para referência futura, embora mantenha a minha conta do delicious. O favorito, é para muitos utilizadores do twitter, uma ferramenta.

As palavras like ou star evocam acção e emoção na avaliação do tweet, sem necessariamente o utilizador procurar preservar o conteúdo para referência futura. Apenas a reacção instantânea interessa, tal como a reacção a qualquer foto de gato na internet.

A meu ver esta mudança, a acontecer, reflecte a tendência natural do mercado e da investigação recente em redes sociais. A análise de emoções em textos, ou carga emotiva presente nas interacções mediadas por redes sociais. Basta procurar no arxiv por emotion OR sentiment para ter uma ideia do quanto a ciência tem investido nesta área.

Ora uma das características da emotion analysis é que precisa de big data (faz lembrar os psico-historiadores do Asimov. Assim, estas experiências do Twitter de mudar de ‘Favoritos’ para ‘Likes’ não passam do twitter estar a tentar transformar uma acção que possuiu uma conotação utilitária, numa acção com uma carga mais emotiva e imediata.

Se for bem sucedido, terá mais dados para analisar, estudar e naturalmente vender à luz desta área da ciência de redes.

Por outro lado o twitter pode perceber que à semelhança do que aconteceu com o delicious, é difícil monetizar os ‘favoritos’ como ferramenta. O próprio elevator pitch do Twitter que aparece no página principal é

“Find out what’s happening, right now, with the people and organizations you care about.”

A análise de conteúdo emocional ajudará o Twitter a perceber o right now para dar aos utilizadores aquilo que eles care about. Assim faz todo o sentido esta mudança de estratégia e embora o ‘like’ tenha sido primeiro utilizado pelo facebook é certamente um dos candidatos fortes no A/B testing que o Twitter parece estar a fazer.

ECCS 2012 Buzz!

The 2012 European Conference on Complex Systems in Belgium starts today, and unfortunately I couldn’t attend :-D

I decided to track the conference almost in real time, and although there’s no live streaming, scientists are using twitter hashtag #ECCS12, so I decided to build a tracking page for the conference. The ECCS12 Buzz page refreshes every 5 minutes.

This is just a 30 min hack, so if you find any bugs please contact me.

update (12:11): Now with RSS feed added so you can use GReader or NetwNewsWire.

update (18:04): Added comments with disqus. Added an ‘Real Time’ agenda on top with link (when available). Not bad for a half-baked, half-hacked page.

Algumas Leituras

Robots automatizam o processo de obter informação das células cerebrais poupando assim meses em treino. Não nos bastavam os aliens a bisbilhutar o nosso cérebro com sondas afiladas agora temos robots a fazer o trabalho… :)

Como surgiu a vida e como sub-processos autocatalíticos dentro de processos autocatalíticos podem explicar emeregência e complexidade. Afinal é sempre tudo uma questão de análise multi-nível, explicada por teoria de grupos matemáticos.

E ainda uma pequena visão da Nova Iorque do futuro onde o ambiente urbano estará de tal forma interligado que sob uma aparência de simplicidade se encontra um sistema de redes de redes de redes de redes de… (multi-níveis outra vez!!!)

Social Network Analysis em R e algum arrumar de casa

A área de Social Network Analysis está cada vez na actualidade científica e não só. Em 2010 leccionei numa Winter School uma cadeira sobre sobre Software para Análise de Redes Sociais no qual dei uma achega à utilização do R1 para análise de redes. O R não é só útil para análise de redes sociais, servindo para produção de documentos com gráficos de forma automática e reprodutível, análise estatística variada, manipulação de big data de forma rápida, etc… Na verdade o R é uma verdadeira mula de trabalho que se presta a diversas fases da manipulação e análise de dados.

Na área da Social Network Analysis (SNA) o R apresenta alguns packages que merecem ser analisados. Um deles é o package igraph que é possui muitas das funcionalidades necessárias para o estudo de redes, desde a produção de grafos segundo determinados modelos, análise de propriedades, detecção de comunidades… O próprio site do igraph tem um livro online sobre o igraph que pode ajudar quem se inicia neste package. Quem estiver a estudar SNA pela primeira vez pode ver também os tutoriais de Hanneman, embora em alguns casos não seja utilizado o R, mas outros softwares como o Ucinet ou o Pajek.

Para quem se estiver a iniciar no R no entanto há outros tutorias ou apresentações que ajudarão a entrar na linguagem. Se precisam de uma introdução em português vejam estes pdfs produzidos no IST aqui e aqui.

How Big is Big in Big Data Analysis?

How Big is Big in Big Data Analysis?

I’ve said that Big Data analysis needs to become mainstream and reach small(er) industries, as until now, “big data” as been applied to massive volumes of data. With the hadoop becoming more popular (and easy to use too) new opportunities for the areas of data mining or data analytics in general will certainly emerge. But will it be big data analysis?

One of the defining characteristics of big data is that sometimes you need more than just labeling it BIG. Forbes as a blog post where a few questions about the data are made. The interesting aspect about those 4 questions is that they could be easily summed into 2 points:

1st) Big Data is by nature complex, with intricate structures and relations among its components in such way that this entanglement needs long computations to grasp its inner aspects

2nd) Big Data is only big data if the time to those computations is a critical aspect of the industry trying to deal with big data. If that’s not the case the author claims it’s just a matter of “large data” analysis. In many contexts this means real-time or quasi real-time data processing.

The author goes on to state that according to these very few industries really process Big Data, but I tend to disagree a bit here as It’s my belief that the two points presented about Big Data are so correlated that indeed you’ll have “Big Data” at many scales as the space of exploration isn’t on Volume or Time alone but on a time-volume space, and therefore we’ll be able to find examples of big data in different scales. In any case I totally agree that the two points are the ones that one must ask to see if our data fits the “big data” label.

2011 The year of big data

I would to add that it was the year of the ramp up of big data. We we’ll see big data more and more and more and more and more in the future years. I believe that we’ll see a growth of the big data easy of use tools. Successful products will without a doubt bring the ease of a browser, or a email client to the tools for data scientists.

go on and read the original that made me share this with you

Spatio-Temporal Dynamics on Co-Evolved Stigmergy

ECCS11 Spatio-Temporal Dynamics on Co-Evolved Stigmergy Vitorino Ramos David M.S. Rodrigues Jorge Louçã

Vitorino Ramos, David M.S. Rodrigues, Jorge Louçã, “Spatio-Temporal Dynamics on Co-Evolved Stigmergy“, in European Conference on Complex Systems, ECCS’11, Vienna, Austria, Sept. 12-16 2011.

 

Ever tried to solve a problem where its own problem statement is changing constantly? Have a look on our approach:

Abstract: Research over hard NP-complete Combinatorial Optimization Problems (COP’s) has been focused in recent years, on several robust bio-inspired meta-heuristics, like those involving Evolutionary Computation (EC) algorithmic paradigms. One particularly successful well-know meta-heuristic approach is based on Swarm Intelligence (SI), i.e., the self-organized stigmergic-based property of a complex system whereby the collective behaviors of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. This line of research recognized as Ant Colony Optimization (ACO), uses a set of stochastic cooperating ant-like agents to find good solutions, using self-organized stigmergy as an indirect form of communication mediated by artificial pheromone, whereas agents deposit pheromone-signs on the edges of the problem-related graph complex network, encompassing a family of successful algorithmic variations such as: Ant Systems (AS), Ant Colony Systems (ACS), Max-Min Ant Systems (MaxMin AS) and Ant-Q.

Albeit being extremely successful these algorithms mostly rely on positive feedback’s, causing excessive algorithmic exploitation over the entire combinatorial search space. This is particularly evident over well known benchmarks as the symmetrical Traveling Salesman Problem (TSP). Being these systems comprised of a large number of frequently similar components or events, the principal challenge is to understand how the components interact to produce a complex pattern feasible solution (in our case study, an optimal robust solution for hard NP-complete dynamic TSP-like combinatorial problems). A suitable approach is to first understand the role of two basic modes of interaction among the components of Self-Organizing (SO) Swarm-Intelligent-like systems: positive and negative feedback. While positive feedback promotes a snowballing auto-catalytic effect (e.g. trail pheromone upgrading over the network; exploitation of the search space), taking an initial change in a system and reinforcing that change in the same direction as the initial deviation (self-enhancement and amplification) allowing the entire colony to exploit some past and present solutions (environmental dynamic memory), negative feedback such as pheromone evaporation ensure that the overall learning system does not stables or freezes itself on a particular configuration (innovation; search space exploration). Although this kind of (global) delayed negative feedback is important (evaporation), for the many reasons given above, there is however strong assumptions that other negative feedbacks are present in nature, which could also play a role over increased convergence, namely implicit-like negative feedbacks. As in the case for positive feedbacks, there is no reason not to explore increasingly distributed and adaptive algorithmic variations where negative feedback is also imposed implicitly (not only explicitly) over each network edge, while the entire colony seeks for better answers in due time.

In order to overcome this hard search space exploitation-exploration compromise, our present algorithmic approach follows the route of very recent biological findings showing that forager ants lay attractive trail pheromones to guide nest mates to food, but where, the effectiveness of foraging networks were improved if pheromones could also be used to repel foragers from unrewarding routes. Increasing empirical evidences for such a negative trail pheromone exists, deployed by Pharaoh’s ants (Monomorium pharaonis) as a ‘no entry‘ signal to mark unrewarding foraging paths. The new algorithm comprises a second order approach to Swarm Intelligence, as pheromone-based no entry-signals cues, were introduced, co-evolving with the standard pheromone distributions (collective cognitive maps) in the aforementioned known algorithms.

To exhaustively test his adaptive response and robustness, we have recurred to different dynamic optimization problems. Medium-size and large-sized dynamic TSP problems were created. Settings and parameters such as, environmental upgrade frequencies, landscape changing or network topological speed severity, and type of dynamic were tested. Results prove that the present co-evolved two-type pheromone swarm intelligence algorithm is able to quickly track increasing swift changes on the dynamic TSP complex network, compared to standard algorithms.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Combinatorial Optimization problems, Dynamical Symmetrical Traveling Salesman Problems (TSP).

Fig. – Recovery times over several dynamical stress tests at the fl1577 TSP problem (1577 node graph) – 460 iter max – Swift changes at every 150 iterations (20% = 314 nodes, 40% = 630 nodes, 60% = 946 nodes, 80% = 1260 nodes, 100% = 1576 nodes). [click to enlarge]