2011 The year of big data

I would to add that it was the year of the ramp up of big data. We we’ll see big data more and more and more and more and more in the future years. I believe that we’ll see a growth of the big data easy of use tools. Successful products will without a doubt bring the ease of a browser, or a email client to the tools for data scientists.

go on and read the original that made me share this with you

Space exploration, science the Medvedev way…

The bare idea that the failure of the launch of the Mars has to be dealt with punishment is something that reveals a total lack of respect by those who produce knowledge. Science is naturally political in democratic countries as you can not really have democratic voting by uninformed people. Science, by advancing knowledge about the world we live in, is a vehicle of democracy and therefore a political instrument.

On the other hand, this kind of oppression over scientists that Medvedev is showing is a very dangerous and totally over the edge. It limits the advances of science, conditions scientists to propaganda successes under the threat of the whip and forgets that scienc advances even in failure. Inpatient politicians make very bad scientists and maybe Medvedev should first look to what has happened to russian science in the past 10 years to understand today’s failures. His declarations are a sign of how he sees governing more than science. It is profoundly wrong and it’s not a good vision for science or democracy.

Complex Systems Society new Website.

The Complex Systems Society (CSS) is a great organisation. In the past month it revamped 2 of its websites. The more institutional website and is available at http://cssociety.org/. On the other hand, the traditional Wiki website where researchers can create their lab pages (or conference pages, personal, etc…). This also got a new facelift and is now more modern and easy to use. If you’re not a CSS member and you are a researcher interested in the areas of complex systems, interdisciplinary research or networks, please join the Society! It’s a great community.

update May 2, 2017 – Some dead links were removed. Text was adjusted accordingly.

Spatio-Temporal Dynamics on Co-Evolved Stigmergy

ECCS11 Spatio-Temporal Dynamics on Co-Evolved Stigmergy Vitorino Ramos David M.S. Rodrigues Jorge Louçã

Vitorino Ramos, David M.S. Rodrigues, Jorge Louçã, “Spatio-Temporal Dynamics on Co-Evolved Stigmergy“, in European Conference on Complex Systems, ECCS’11, Vienna, Austria, Sept. 12-16 2011.

 

Ever tried to solve a problem where its own problem statement is changing constantly? Have a look on our approach:

Abstract: Research over hard NP-complete Combinatorial Optimization Problems (COP’s) has been focused in recent years, on several robust bio-inspired meta-heuristics, like those involving Evolutionary Computation (EC) algorithmic paradigms. One particularly successful well-know meta-heuristic approach is based on Swarm Intelligence (SI), i.e., the self-organized stigmergic-based property of a complex system whereby the collective behaviors of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. This line of research recognized as Ant Colony Optimization (ACO), uses a set of stochastic cooperating ant-like agents to find good solutions, using self-organized stigmergy as an indirect form of communication mediated by artificial pheromone, whereas agents deposit pheromone-signs on the edges of the problem-related graph complex network, encompassing a family of successful algorithmic variations such as: Ant Systems (AS), Ant Colony Systems (ACS), Max-Min Ant Systems (MaxMin AS) and Ant-Q.

Albeit being extremely successful these algorithms mostly rely on positive feedback’s, causing excessive algorithmic exploitation over the entire combinatorial search space. This is particularly evident over well known benchmarks as the symmetrical Traveling Salesman Problem (TSP). Being these systems comprised of a large number of frequently similar components or events, the principal challenge is to understand how the components interact to produce a complex pattern feasible solution (in our case study, an optimal robust solution for hard NP-complete dynamic TSP-like combinatorial problems). A suitable approach is to first understand the role of two basic modes of interaction among the components of Self-Organizing (SO) Swarm-Intelligent-like systems: positive and negative feedback. While positive feedback promotes a snowballing auto-catalytic effect (e.g. trail pheromone upgrading over the network; exploitation of the search space), taking an initial change in a system and reinforcing that change in the same direction as the initial deviation (self-enhancement and amplification) allowing the entire colony to exploit some past and present solutions (environmental dynamic memory), negative feedback such as pheromone evaporation ensure that the overall learning system does not stables or freezes itself on a particular configuration (innovation; search space exploration). Although this kind of (global) delayed negative feedback is important (evaporation), for the many reasons given above, there is however strong assumptions that other negative feedbacks are present in nature, which could also play a role over increased convergence, namely implicit-like negative feedbacks. As in the case for positive feedbacks, there is no reason not to explore increasingly distributed and adaptive algorithmic variations where negative feedback is also imposed implicitly (not only explicitly) over each network edge, while the entire colony seeks for better answers in due time.

In order to overcome this hard search space exploitation-exploration compromise, our present algorithmic approach follows the route of very recent biological findings showing that forager ants lay attractive trail pheromones to guide nest mates to food, but where, the effectiveness of foraging networks were improved if pheromones could also be used to repel foragers from unrewarding routes. Increasing empirical evidences for such a negative trail pheromone exists, deployed by Pharaoh’s ants (Monomorium pharaonis) as a ‘no entry‘ signal to mark unrewarding foraging paths. The new algorithm comprises a second order approach to Swarm Intelligence, as pheromone-based no entry-signals cues, were introduced, co-evolving with the standard pheromone distributions (collective cognitive maps) in the aforementioned known algorithms.

To exhaustively test his adaptive response and robustness, we have recurred to different dynamic optimization problems. Medium-size and large-sized dynamic TSP problems were created. Settings and parameters such as, environmental upgrade frequencies, landscape changing or network topological speed severity, and type of dynamic were tested. Results prove that the present co-evolved two-type pheromone swarm intelligence algorithm is able to quickly track increasing swift changes on the dynamic TSP complex network, compared to standard algorithms.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Combinatorial Optimization problems, Dynamical Symmetrical Traveling Salesman Problems (TSP).

Fig. – Recovery times over several dynamical stress tests at the fl1577 TSP problem (1577 node graph) – 460 iter max – Swift changes at every 150 iterations (20% = 314 nodes, 40% = 630 nodes, 60% = 946 nodes, 80% = 1260 nodes, 100% = 1576 nodes). [click to enlarge]

From Standard to Second Order Swarm Intelligence Phase-Space Maps

ECCS11 From Standard to Second Order Swarm Intelligence Phase-Space Maps David Rodrigues Jorge Louçã Vitorino Ramos

David M.S. Rodrigues, Jorge Louçã, Vitorino Ramos, “From Standard to Second Order Swarm Intelligence Phase-space maps“, in European Conference on Complex Systems, ECCS’11, Vienna, Austria, Sept. 12-16 2011.

Abstract: Standard Stigmergic approaches to Swarm Intelligence encompasses the use of a set of stochastic cooperating ant-like agents to find optimal solutions, using self-organized Stigmergy as an indirect form of communication mediated by a singular artificial pheromone. Agents deposit pheromone-signs on the edges of the problem-related graph to give rise to a family of successful algorithmic approaches entitled Ant Systems (AS), Ant Colony Systems (ACS), among others. These mainly rely on positive feedbacks, to search for an optimal solution in a large combinatorial space. The present work shows how, using two different sets of pheromones, a second-order coevolved compromise between positive and negative feedbacks achieves better results that single positive feedback systems. This follows the route of very recent biological findings showing that forager ants, while laying attractive trail pheromones to guide nest mates to food, also gained foraging effectiveness by the use of pheromones that repelled foragers from unrewarding routes. The algorithm presented here takes inspiration from this biological observation.

The new algorithm was exhaustively tested on a series of well-known benchmarks over hard NP-complete Combinatorial Optimization Problems (COP’s), running on symmetrical Traveling Salesman Problems (TSP). Different network topologies and stress tests were conducted over low-size TSP’s (eil51.tsp; eil78.tsp; kroA100.tsp), medium-size (d198.tsp; lin318.tsp; pcb442.tsp; att532.tsp; rat783.tsp) as well as large sized ones (fl1577.tsp; d2103.tsp) [numbers here referring to the number of nodes in the network]. We show that the new co-evolved stigmergic algorithm compared favorably against the benchmark. The algorithm was able to equal or majorly improve every instance of those standard algorithms, not only in the realm of the Swarm Intelligent AS, ACS approach, as in other computational paradigms like Genetic Algorithms (GA), Evolutionary Programming (EP), as well as SOM (Self-Organizing Maps) and SA (Simulated Annealing). In order to deeply understand how a second co-evolved pheromone was useful to track the collective system into such results, a refined phase-space map was produced mapping the pheromones ratio between a pure Ant Colony System (where no negative feedback besides pheromone evaporation is present) and the present second-order approach. The evaporation rate between different pheromones was also studied and its influence in the outcomes of the algorithm is shown. A final discussion on the phase-map is included. This work has implications in the way large combinatorial problems are addressed as the double feedback mechanism shows improvements over the single-positive feedback mechanisms in terms of convergence speed and of major results.

Keywords: Stigmergy, Co-Evolution, Self-Organization, Swarm Intelligence, Foraging, Cooperative Learning, Combinatorial Optimization problems, Symmetrical Traveling Salesman Problems (TSP), phase-space.

A caminho da Conferência Europeia de Complexidade #ECCS11

COMEÇA SEGUNDA-FEIRA a Conferência Europeia de Complexidade em Viena.

Esta conferência, que no ano passado decorreu em Lisboa e da qual fiz parte da organização, é a maior conferência europeia (talvez mundial) da área das ciências da complexidade. Apresenta um espectro disciplinar bastante vasto e abrange comunidades empenhadas no estudo de sistemas complexos, que vão desde as ciências sociais à física, passando pela informática, matemática ou análise de redes.

O programa inclui diversos oradores e diversos temas a correr em paralelo pelo que vai ser impossível ver tudo, mas estou particularmente interessado nos temas de análise de redes sociais e computer science principalmente. A ver se consigo apanhar boas sessões.

Para além do que pretendo ver, estou também a organizar um Satellite Meeting para jovens investigadores que estejam a finalizar os seus doutoramentos. Será no dia 14, quarta feira e certamente que aqui estarei um pouco preso, mas tentarei espreitar outros que estejam por perto.

Claro que no meio disto tudo tenho que arranjar um tempinho para passear e conhecer a cidade porque ficar preso o tempo inteiro numa conferência é demais.

Tem algumas sugestões para visitar em Viena?