
CellCom:
A Hybrid Cellular Automaton Model of Tumorous Tissue

Formation and Growth

David Rodrigues1, Jorge Louçã2

1 MSc Student in Complexity Sciences, ISCTE – Instituto Superior de Ciências do Trabalho

e da Empresa. Av.ª das Forças Armadas – 1649-026 Lisboa, Portugal
{m4467@iscte.pt}

2 Supervising Professor, ISCTE – Instituto Superior de Ciências do Trabalho e da Empresa.
Av.ª das Forças Armadas – 1649-026 Lisboa, Portugal

{Jorge.L@iscte.pt}

Abstract. We propose a descriptive 2D Hybrid Cellular Automaton model that
simulates the growth behavior of a tissue with cancerous cells. We combine a
set of hallmarks of cancer (Hanahan and Weinber, 2000) with the effect of
acidification of the cell surroundings by the production of acid by tumorous
cells and model some aspects of the communication in living tissues. The
dynamics of the growth is determined to obey a power law. We conclude that
the model predicts a cancer growth rate between the exponential Gompertzian
growth and a laboratory evidence of linear growth.

Keywords: Simulation, Cancer Growth, Cellular Automaton, Hallmarks of
Cancer.

1 Introduction

The stronger you are you get to see more connections. The pieces and
positions come alive with patterns. You start seeing possibilities in
these patterns. (…) As you refine your analysis the more sharp your
understanding of the position gets. The pieces are there standing and
suddenly when you see the connections they become beautiful.

Vishy Anand, (Chess Player, n.1 in FIDE rank); April, 24th 2007.

There was an estimated 6,7 million people deaths in 2003 from cancer worldwide
and 10,9 million more were diagnosed (Parkin et al., 2005). This numbers are
expected to grow with time as populations get older in developing countries and better
cancer treatments are promoting longer longevity. Until now cancer treatment has
been generally limited to a specific form of the disease. Most cancer research has
been focused in particular reactions and signal transduction pathways. This offer ways
for therapy, but are specific to that form of cancer. At this level of detail each variety
of cancer is unique and a complicated phenomenon.

The cancer research is one field where most money is spent in today’s research.
The understanding of the dynamics of formation and cancer growth can give
researchers opportunities to try new prevention and treatment solutions. Computer
simulations have been to used to study in silico some of the process that are thought
to lead to the formation of cancerous masses and have attained good results in
explaining some facts observed in vivo and in vitro tumors.

We want to take an approach that can describe the problem in a meaningful way,
but avoiding the caveats of going into a very demanding computational and
reductionist approach. A reductionist approach would lead the simulation to a scale of
molecular dynamics where there’s still much uncertainty how intra-cellular dynamics
evolve. On the other way a holistic view of this problem would explain the global
dynamics of cancer formation and growth in terms of some macroscale properties but
would fail in pinpointing the micro causes.

We believe that somewhere in the middle of this two views is possible to create a
framework that is still computational feasible and that would help explain both some
of the macroscale dynamics has some microscale mechanisms.

This kind of framework would allow itself to be extended in the future in both
directions, up and bottom, by the inclusion of refined submodels for those aspects of
interest.

In this work we are interested in answering some questions that might help
understand this problematic. We defined a research hypothesis where we state that it
is possible to use simulation tools in which we could integrate several levels of
abstraction of the reality in a way that would allow us to have at least a qualitatively
description of the dynamics of the process. We are interested in the level of
communication between cells and how this chemical signaling can be conducted in
silico. Another level of interest is that of the gene expression and eventually the
mechanics of it. And in a third level we are interested in the macroscale analysis of
the patterns that emerge in the cancerous tissue.

This contribution demonstrates the possibility of using computer simulations to
attain a descriptive model of the cancer formation and growth using very simple rules.

The main body of this work is divided in three main blocks. We’ll start with a
bibliographic review of some aspects that are pertinent to the simulation of biological
systems and in particular to the simulation of cell tumors. Then we’ll introduce our
proposed model, CellCom, with a descriptive methodology proposed by Grimm
followed by the presentation of the experiments and results obtained. Finally we
discuss the model presented and also focus on some topics that would be interesting
to develop in further research.

2 Bibliographic review.

Overview

Cellular systems and subsystems can be simulated at three different scales: the

nanoscale, the mesoscale and the continuum or macroscale. At the level of the atoms
and molecules we typically use molecular dynamics to model the behavior of 100's to
1000's of discrete atoms over relatively short periods of time (10-10 to 10-9 s) and space
(10-9m). Molecular dynamics methods, which treat the atoms and bonds in a semi-
classical manner, are fully deterministic and remarkably accurate over the short
temporal and spatial scales that are normally simulated. This limits the number of
molecules that can be simulated and therefore when it is needed to model at a
macroscale we need to turn to ordinary (ODE) or partial (PDE) differential equations.
This makes the model a continuum where molecules essential loose their discreteness
and became infinitely small and numerous (Wishart 2004). But even at this continuum
level it isn’t possible to describe every system in terms of differential equations, and
not all are solvable. This is where a middle approach is needed. One that still captures
the discrete aspects of molecules but allows for an upper analysis and modeling. This
is where simulation incorporating different abstraction levels can help connecting the
nanoscale and macroscale in the mesoscale of modeling.

In order to understand the field of research it is necessary to review some aspects
that need to be taken into account. Mainly we will address in the following sections
the description of the cellular life-cycle, we’ll characterize some aspects of tumorous
masses and it’s growth dynamics, we’ll refer other aspects like the fractality of the
contour of growing tumors and the use of nanomachines that simulate molecular
communication. Also we’ll end this section by reviewing some software programs
and models that were developed to explain some aspects of this field of research.
We’ll start by describing succinctly the cell life-cycle.

Cell Life-Cycle

The first step to understand the problem of tumor growth is look at the cell life
cycle.

A cell in an adult organism can be viewed as a steady-state system. The DNA is
continuously read into mRNAs, which allow the production of proteins. As the
proteins function they are also being degraded and replaced by new ones and the
system is balanced and the cell neither grows, shrinks or changes its function. This
static overview of the cell doesn’t give insights to its life cycle dynamic aspects

The dynamics of a cell can best be understood by examining the course of its life.
Each cell arises from the division of a parent cell into two daughter cells. The
sequence of events that lead to this division is called the cell-cycle and has a major
importance as it is the mechanism by which any type of cell grows and multiplies.

Basically, the cell-cycle is composed of 4 steps in sequence that act as an internal
clock for the cell life (Alberts et al. 1998):

G1 phase – in this phase the cell checks to see if there are conditions to initiate
DNA replication. It acts has a checkpoint to see if the cell has the size and
environmental conditions to continue with the division process. In this phase the cell
also verifies if the DNA is damaged. If the cell verifies that all conditions are met,
then it will trigger the next phase where DNA multiplication occurs.

S phase – in this phase the cell will start replicating it’s DNA. It is also called the
synthesis phase and at it’s end will have a double stranded DNA.

G2 phase – This phase acts as a checkpoint similar to G1. The cells checks to see if
the DNA replication has ended correctly and checks if it’s size and environment of
the cell allow it to enter the mitosis phase were actual division occurs. As in the G1
phase, the cell has mechanisms to halt the progress of cellular division at this point
waiting for the conditions to continue the process. These three phases are usually
grouped and called the interphase.

M phase – this phase is were the division of the cell occurs. The mitosis in itself is
sequence of steps through which the division takes place. From the condensation of
the chromosomes and formation of the mitotic spindles that will pull each pair of
chromosomes to its spindle pole, to the division of the cytoplasm creating the two
daughter cells, all occur in the M phase.

It is a general rule that mammalian cells will multiply only if they are simulated to

do so by signals from other cells. If deprived of such signals, the cell cycle arrests at a
G1 checkpoint and enters the G0 state. G0 is a modified G1 state in which the cell-
cycle control system is partly dismantled (Alberts et al. 1998).

Figure 1 – Cell Life Cycle

Cells spend their life in one of two states depending if they are allowed to replicate
or not. If they are in the quiescent state, they don’t reproduce and this state called G0.
If they are allowed to replicate then they enter the G1 phase and will proceed through
their cell-cycle up to the point where two daughter cells are formed from one parent
cell.

Tumor Growth

How cancer grows and how it is initiated has been one field of great study by the
medical community. We wont to go over an exhaustive analysis of what has been
accomplished in recent years as it would reveal a daunting task as the number of
publications and researches in this area is overwhelming. We will review some of the
papers that we studied during the preparation for the construction of our model. This
will give an insight of what is being done in tumor analysis and will be the grounds on
which we made our proposition.

Hallmarks of Cancer

Hanahan and Weinberg (Hanahan and Weinberg, 2007) wrote a paper called “The
Hallmarks of Cancer” where they stated that tumorigenesis in humans is a multistep
process and that those steps reflect genetic alterations that drive the progressive
transformation of normal human cells into highly malignant derivatives. From the
many cancers diagnosed in humans they say that there’s an age-dependent incidence
implicating four to seven rate-limiting, stochastic events. They state that “taken
together, observations of human cancers and animal models argue that tumor
development proceeds via a process formally analogous to Darwinian evolution, in
which a succession of genetic changes, each conferring one or another type of growth
advantage, leads to the progressive conversion of human cells into cancer cells”.

They proposed that only six cellular alterations are essential to malignant growth.
These six hallmarks are believed to be common to most human tumors. The
phenotypic changes at the cellular level that are essential hallmarks are: unlimited
mitosis, ignoring growth-inhibition signals, escaping dependence on external growth
stimulation, the ability to recruit new vascular structures, modality and invasion and
disabling the mechanisms that normally detect mutation and trigger apoptosis. To this
six genetic instability is added has a factor that accounts for the high incidence of
mutations on cancer cells (Abott et al., 2006).

From the vast catalog of cancer cell genome types the authors proposed that the

manifestation of six essential alterations in cell physiology will dictate malignant
growth. These hallmarks are resumed in the following list:

1) self-sufficiency in growth signals

2) insensitivity to growth-inhibitory (anti-growth) signals
3) evasion to programmed cell death (apoptosis)
4) limitless replicative potential
5) sustained angiogenesis
6) tissue invasion and metastasis

Figure 2 – Hallmarks of Cancer

The authors also refer that the acquisition of this six capabilities during the course
of tumor progression creates a dilemma as while evidence suggests that most of them
are acquired directly or indirectly, through changes in cancer cells, the monitoring and
repairing mechanisms in normal cells make this mutations rare. The genome
maintenance system strive to ensure that DNA sequence information remains pristine,
and the checking mechanisms would make tumor cell genomes highly unlikely to
occur within the human life span. Yet, tumors do appear at a substantial frequency,
making several authors state that tumor cells must acquire increased mutability in
order for the process of tumor growth to be successful. The authors refer that from
those systems capable of increasing cell mutability, the most prominent is the p53
tumor suppressor protein, which in response to DNA damage, elicits either cell cycle
arrest to allow DNA repair to take place or apoptosis if the damage is excessive. The
authors say that is clear that the p53 signaling pathway is lost in most human cancers.

This makes the hallmarks of cancer a set of seven instead of six manifestations,
although six of might be considered a phenotypic manifestation of genome mutations
and the seventh a multiplication factor that will increase the rate at which the first six
will occur.

Fractality and Growth Laws

One interesting aspect of the tumor dynamics that has been studied by Brú et al. in
2003, is that cell colonies are fractal, and a classical Euclidean geometry description
of the growth contours is very difficult to provide. These authors did a fractal analysis
of the nature colonies of 15 lines of cancer growing in vitro and as well 16 others
growing in vivo and they concluded that all colonies had the same growth dynamics,
which corresponds to the molecular beam epitaxy (MBE) universality class. They also
calculated characteristic fractal dimensions for all of the lines of cancer.

This meaning that the cell aggregates are characterized by 1) a linear growth rate in
the sense that the term “linear” means that the colony radius grows linear with time,
2) the constraint of growth activity to the outer border of the cell colony or tumor and
3) diffusion at the colony surface of cells. This evidence is in contradiction with other
models of cancer growth that state that the dynamics is characterized by a
Gompertzian growth.

Molecular Communication

There's been some recent research in this field with its interdisciplinary scope
ranging from nanotechnology, biotechnology to communication technology.
Molecular communication is inspired by the observation that in biological systems,
communication is typically done through molecules. Hiama et al. have studied
molecular Communication in the attempt to apply these concepts to nanomachines
communication. These machines are molecular scale objects that are capable of
performing simple tasks such as actuation and sensing. According to Whitesides
(Whitesides, 2001) there's two types of nanomachines: artificially created machines
that mimic traditional machines, and nature made nanomachines, also called soft
nanomachines which are found in biological systems.

The most interesting aspect of the use of the nanomachines research in the context
of molecular communication is that the authors defined a set of steps that must be
present to make communication flow from a sender to a receiver. The proposed
mechanisms might be considered as a submodel to implement some aspects of the
virtual cell.

Software Simulations

We will now review some software packages that are used in cellular simulation
and cancer growth modeling.

SymCell (Wishart et al, 2004)

This program is a dynamic cellular automaton. This means basically that agents are
placed in one position and that they can assume a state from a predefined set of states
and then change states according to a set of rules. Usually these rules represent some

sort of environmental representation of the agent’s surroundings. The dynamic
cellular automaton is one where its agents are not confined to a single spot in the
lattice of those more traditional CAs, but can move around the lattice to simulate
Brownian movement, diffusion, convection, or any other property that might be
appropriate for the agent to have.

Wishart et al., used this approach in their SymCell software, where the user can
use it to simulate cellular and biochemical processes, through a DCA (dynamic
cellular automaton) algorithm. They provide a simple user interface allowing the user
to drag & drop elements into the simulation for which, the user must then introduce
some parameters.

The software is capable of implement some of the cellular characteristics:

a) Small molecules.
b) Membrane.
c) Membrane proteins
d) DNA molecules
e) Genes

The software allows the user to create interactions between these components in

ways that mimic the behavior of real cells.
After the creation of the components, the simulator will model the process and

simulate it. Each step of the simulation represents 1 ms and the movable elements
placed by the user can move in theirs Moore neighborhood.

Also the simulator can use data in the Systems Biology Markup Language (SBML)
witch allows the user to import data from available databases.

This system has its virtues but also is problems. Modeling at a macroscale (at least
at cellular level) implies that the discreet approach of the DCA doesn’t allow
matching the atomic spatial complexity of something like an enzyme. Also these
models can’t predict certain properties of the system, like molecular properties, and
for those other method should be used. Those results can than be included in the
DCA, but not the other way around.

CancerSim (Abott et al. 2006)

CancerSim implements the hallmarks of cancer described by Hanahan and
Weinberg in the Cell magazine in 2000. The simulation consists of cells and a
circulatory system, both of which grow according to their own rules. The model is
built as a 3D cellular automaton where each place (cube) contains either one cell or an
empty space, but where the vascular system may pass through that cube without
restrictions. CancerSim is implemented in C++ and available under a free license and
exist in several flavors of Unix, MacOS and Windows.

In this model, the authors implemented the Hallmarks of cancer: self-sufficiency in
growth signals, sustained angiogenesis, insensitivity to growth inhibitor signals,
evasion to apoptosis, limitless replicative potential and genetic instability. They didn’t
implement tissue invasion and metastasis. Although genetic instability isn’t
considered one hallmark of cancer, evidence showed that in normal conditions cells

wouldn’t have the many chances to convert to cancer cells during the life-span of
human life. The authors state this genomic instability must therefore be present
(Hanahan et al. 2000). The genomic instability is modeled in CancerSim as a switch
in the pseudo-genome of the cell that will have a multiplying impact on the
probability of occurrence of other mutations.

Patel et al. 2001

Patel et al. (Patel et al., 2001) have proposed a cellular automaton model of the
early tumor growth and invasion. Their model proposes a hybrid cellular automaton
that incorporates normal cells, tumor cells, necrotic space or empty space and a
random network of native microvessels as the components of the state vector of each
square in the lattice of the CA. The authors use a set of differential equations to model
the diffusion of H+ and Glucose, being the former largely resulting from the tumor’s
excessive reliance on anaerobic metabolism. In their paper they showed that high H+
ion formation is favorable to tumor production (but not to normal cells). However, for
each pH there’s an optimal microvessel density for which growth and invasion is most
successful. This leads to a local optimal concentration of acid for the tumor, but not
for the normal cells.

The model they presented is a NxN lattice of automaton elements each with a
vector state and a rule-set governing their evolution. Each lattice element regardless
of its state and occupation enforces a correspondence between automaton elements
and physical cells comprising the tissue. This elements have a physical size of
∆=20µm. The simulation is carried by setting up a random network of vascular cells
in the model and then placing a group of 5 cells in the middle of the lattice. The
simulation then performs according to a simple set of rules:

a) If the automaton element is vacant or occupied by a micro vessel then he
wont evolve directly, although in the case of the former it can evolve
indirectly by he division of another cell.

b) If the occupancy of the automaton is either a tumor or a normal cell then
the concentrations of H+ and Glucose are considered and pH thresholds
for each type of cell decide the evolution of this automaton element.

c) If the cell survives because pH is above its threshold then it will be given
opportunity do divide. Each cell will only survive in this step if the
concentration of Glucose is above a certain value, and the division will
only be successful if there’s a vacant cell in the vicinity.

d) The remaining values of the state vector that are described by continuous
properties are then updated by the solving of two differential equations.

This model was written in C with simulations of lattices 100x100 and 200x200 (for

selected parameters) and run for 40 generations on a DEC Alpha Unix workstation.
The authors conclude that the H+ production by tumor cells in the early

tumorigenesis, when only a few tumor cells exist, would be sufficient to significantly
alter the environment, although the model showed that from a small number of tumor

cells, the mass will develop into a clinically important malignancy if the clonal
phenotype alters the local microenvironment so that it is hostile to normal cells. They
affirm that this depends on the balance of the acid produced and the acid removed by
the local blood flow. In this approach they examine the influence of vascularity and
conclude that for each rate of acid production there is an optimal density of
microvessels that facilitate the removal of excess acid in the system.

Kansal et al. 2000

“Simulated Brain Tumor Growth Dynamics Using a Three-dimensional Cellular
Automaton”

Kansal et al. (Kansal et.al, 2000) developed a three-dimensional model of brain
cancer growth that using a small set of parameters show macroscopic behavior
identical to those of real tumors, mainly the Gompertzian growth for cancers growing
nearly three orders of magnitude in radius. Their model also predicts the composition
and dynamics of the tumor at selected time points in agreement with medical
literature. This model presents some features that are worth mentioning:

a) The ability of cells to divide is treated by redefining the transition

between dividing and non-dividing cells, as the cells attempt to divide,
they will search for sufficient space for the new cell, beginning with its
neighbors and expanding outwards until they find an empty cell or
nothing is found within the proliferation radius. If the cell attempts to
divide but cannot find space it is turned into a non-proliferative cell

b) The CA used is modeled in a 3D lattice constituted by Voronoi
tessellation, and is isotropic in space avoiding the creation of artificial
anisotropies possible with square or cubic lattices. The Voronoi lattice
used in the model defined neighbors of a cell by those who share a
common face.

c) The lattice has a varying density sites (adaptive grid lattice) that allows
small tumors to be simulated with greater accuracy an still allowing
them to grow large in size (three orders of magnitude)

This model allowed the authors to simulate the growth of small populations of

about 1000 real cells to a fully developed tumor with 1011 cells. This number of cells
requires great computational power and the simulations were run in an IBM SP2
Parallel computer.

This model idealized a tumor with as a spherical body consisting of several
concentric shells. The inner core was composed of necrotic cells, which radius was a
function of time. The next shell contained cells that where alive but in a quiescent
state (G0 state in cell-cycle). The outer shell has the cells that are in an active state
and can go therefore the natural cell life cycle (G1 S G2 M).

Comparison of previous models

The use of bottom-up and/or top-down approaches in the modeling of cellular
systems.

Each approach as it's advantages and it's disadvantages. A top-down approach will

allow the scientist with a valuable tool for generically describing the dynamics of a
system, without going into much detail on how the particular components work.
Those simulations mimic the overall behavior of the system, even if the rules
underlying the behavior aren't mapped in the real system, although many times they
have some sort of inspiration from the micro link. The top-down approach gains in
generality but what it gains it looses in assertiveness as the models will be difficult to
validate against real microlevel data, and will not have a defined field of application.
On the other hand, this approach is particularly interesting as a tool to develop rapid
conceptual frameworks of the problem in analysis and might macroscopically explain
phenomenons for what the bottom-up approach still hasn't the power to explain.

The bottom-up approach allows scientists to model the complex diseases such as
cancer in a level and resolution that can predict the correct “how’s” and “why’s” of
drug action on the tumors. This can't be done without a comprehensive knowledge at
the molecular level. This bottom-up approach has it's trade off in the form of more
computational power needed to run the simulations, better understanding of the
underlying molecular interactions and components, and a bigger variety of actors
present in the simulation. These kinds of approach are time consuming and resource
demanding, due to the high number of freedom degrees that are present in the study
system.

These two different approaches reveal two pathways that are usable in the research
of biological systems, and as the computational power needed is being made available
by the industry, both pathways will end up converging somewhere in the middle.

From the bibliographic research that we’ve conducted we can now resume the

main characteristics of what we’ve observed in the following table:

Table 1 – Mais aspects of the several approaches studied.

 Main Characteristics
Wishart et al. 2004 • Dynamic 2D cellular automaton

• Not Cancer or Cellular Growth
• Square Lattice
• Drag & Drop Interface
• Only intracellular dynamics
• SBML databases
• Doesn’t allow the prediction of properties
• Java

Abott et al. 2006 • 3D cellular automaton
• Cube lattice
• Implements the hallmarks of cancer

 Main Characteristics
• Extracellular dynamics
• Simplified Intracellular dynamics
• C++ / free license

Patel et al. 2001 • Hybrid 2D Cellular Automaton
• Influence of Glucose, H+ and

Vascularization on Cancer growth
• Differential equations used for Glucose

and H+ diffusion
• C / DEC Alpha Unix Workstation

Kansal et al. 2000 • 3D Cellular Automaton
• Voronoi Lattice
• Brain Cancer (Specific)
• IBM SP2 Parallel Computer (AIX)
• 1.5 Million Lattices (minimum)
• Large initial cell population

From the models observed, its clear that mainly the development of models tend to
use some form of cellular automaton. They aren’t pure CAs as they don’t limit each
cell to a vector state where all combinations are known and a set of rules very well
established that are the same for each and every cell. Usually they implement some
sort of stochastic factor and also they use some sort of continuum mathematical
description of the environment where cells live, mainly in the form of ordinary
differential equations.

From this table we also noticed that models tend to require high computational
power. Exception made to the model presented by Wishart et al. although this is the
only model that focuses entirely in the intracellular aspects of cellular dynamics
although it doesn’t model cell colony growth.

Different lattices are used in this modeled but it is noticed that researchers tend to
prefer 3D environments as they mimic reality better.

From the analysis of this works and taking into account the limitations of
computational power, time and resources that we had for this study we opted to try to
bring into a simulation the ideas of the Abott et al. model that implement a subset of
the hallmarks of cancer and add to this model the ideas of acid production that were
described by Patel et al. The ideas of this project complement something that lacks on
the former, as it doesn’t implements the effect of the tumor cells in the environmental
conditions. The production of acid acts as an inhibitor for cell growth, both normal
and tumorous and therefore should be considered. The 3D modeling was discarded at
this time as this extra layer of complexity in our model wouldn’t allow us to develop a
fully functional model, or even analyze it properly. The aim of our model was then to
attempt to make a descriptive representation of the cancer growth phenomenon and
evaluate the viability of using cellular automaton to mimic the real behavior of cancer
growth.

3 CellCom: Model Proposal

It is our intention to produce a model that can describe the mechanism of tumor
growth through the implementation of what is considered consensual in the formation
of cancer cells and it’s growth. From the previous readings we’ve outlined a
description of the model that would incorporate the hallmarks of cancer with the
evidence that cancer cells produce acid that will change the surroundings and affect
the dynamics of normal and tumorous cells. We also included some aspects that
interest us in respect to communication detection and communication patterns. In
biological systems communication is processed by chemical signals and can broadly
be characterized in four groups: Long distance communication includes point to point
communication as for example neuronal signals are sent through to any point of the
organism from the brain, and single to multi or multi to multi communication in the
form of hormones that are segregated by glandules and then propagated in the body
by the vascular system. Short range communication is also divided in two different
aspects of communication, as it can contact-dependent, meaning that cells will only
signal other cells they have physical contact with, or it can be short-range diffusion
signaling as chemical signals will only affect those in the vicinity of the cell. In our
model we want to model some of this aspects mainly we will include contact-
dependent communication in the way cells can perform mitosis, we will have short
range diffusion communication in the terms that cancer cells produce acid that will
subsequently diffuse locally affecting both normal cells and tumor cells. We also
implement a pseudo-long distance in the form of nutrients being fed by the vascular
system.

We programmed a model of cell communication where cells are located in a 2D
lattice. There positions will be fixed and cells wont have movement. The signals were
modeled not as independent agents, but as properties of each lattice place, as the
scales between cells and signals are several orders of magnitude different.

From the previous readings we had the idea of implementing some sort of
molecular communication mechanism within the scope of nanomachines presented by
Hyama et al. but due to the different scales at which cells and molecules operate this
idea had to be discarded and was pushed to further developments.

Next, we present the description of model in detail, according to the protocol

proposed by Grimm et al. (2006) called ODD (Overview, Design concepts, and
Details).

Overview, Design Concepts and Details

Overview

Purpose
The purpose of the model CellCom is to illustrate how tumorous cells are

generated from the genetic mutations that occur in normal cells, and to show how
these mutations are affected by chemical signals from it’s environment. Also the
model will verify that even in a 2D cellular automaton that implements a set of
properties and methods from biology, it is possible to test the dynamics of tumor
formation and the overall tumor mass growth according to the literature models.

State Variables and Scales
The model comprises four levels that affect its overall behavior: Nutrients space,

Acid space, Vascular space and Cell space.
Cells are described by a pseudo genome of phenotypic manifestations. As we

consider the hallmarks of cancer to be the result of gene mutations, each cell has a
pseudo genome that has equi-probable “genes” that will activate each of those
hallmarks. Also this genome includes one extra gene to take into account genetic
instability and this manifestation is also modeled has if it was induced by a gene
mutation. Each cell is initialized with a copy of its parent cell genome. At this time
the metastasis gene will not be modeled, as the mechanisms that lead to it are still not
well understood. It would also require a much vast space, which is several orders of
magnitude greater than the tumorous formation here studied.

The vascular system will be responsible for the distribution of nutrients across the
tissue. At the initialization process only one vascular cell will be created in the same
place has a normal cell. Then through the angiogenesis process triggered by a
mutation in cells, the vascular system will be called to multiply and grow into those
cells that have mutated.

The nutrients space only has one variable that represents the concentration of
nutrients in each specific location. This concentration is an overall measure of all the
nutrients existent in this place. We can imagine this entity to mimic the glucose
concentration at each place and we choose to implement a serum concentration that
can’t go under 2.5 mM to allow cells to avoid hypoglycemic effects (Patel et al.,
2001)

The acid space is similar to the nutrient space as it represents the acidity of the
medium. The model is initialized admitting a pH of 7.4 in all cells. As tumor cells
start producing acid then a simple model of diffusion will transport acid from high
concentration cells to less concentrated ones.

We had to define two constant rates, kRate and hRate. kRate takes into account the
consumption of nutrients by cells and hRate the production of acid by tumorous cells

due to their anaerobic metabolism. The kRate for tumorous cells is a ten fold of the
kRate for the normal cells and therefore we didn’t implement a separate constant.

Table 2 – Parameters of the model and their default values.

Parameter Description Value
ProbCompeteNeighbor When a Cell has the Insensitivity to

Growth-Signals Gene activated it’s
daughter will compete with a neighbor and
have this probability of success.

0.4

ProbDetectionDamageCells This is the probability of detection that a
gene is mutated. This check is made on G2
phase of the cell life-cycle.

0.97

ProbNormalGeneMutation All genes have this equal probability of
undergoing mutation in S phase of the cell
life-cycle.

0.01

ResidualApoptosisProbability This is the probability that a cell will have
to go under Apoptosis that represents other
factors not accounted by the model.

0.1

TelomereSize: This is the number of divisions a cell can
undergo before dieing. Cancer cells that
have the Limitless Replicative Potential
gene activated will ignore this and live
forever.

10

VascularNutrients This is the concentration in mM that the
vascular system is capable of distributing
to the surroundings of each cell to which it
is connected.

5

WorldXSize Dimension of the lattice in X 150
WorldYSize Dimension of the lattice in Y 150

Process Overview and Scheduling
The model evolves in a discrete step manner, with each step corresponding to a

possible complete life-cycle of the cell. We say “possible” because as we’ve seen, it is
possible for a cell to enter a non-mitotic state G0 where it isn’t dividing. As cells life
cycle can have very different times for their life-cycles we can’t map the time step to
a specific amount of time. Some cells might have a life-cycle of 12h but others will
have longer life-cycles or shorter, depending on the functions they perform in the
organism. In our case we assume that each step of the simulation holds the time of a
complete life-cycle. In each step, the model performs the following tasks:

Figure 3 – Model State Diagram

The model at each step starts by ordering the vascular system to add nutrients to
the tissue (state 1) and remove the acid produced by tumorous cells (state 2) then the
model implements the diffusion models for acid and nutrients (State 3 and 4). At State
4 the preparation of the scenario where cells act is ready and the model orders each
cell to perform the tasks in the step as we can see in the following figure.

Figure 4 – Cell “Pseudo-Step” Diagram

When cells are ordered to perform their steps, they start by checking (“sensing”)
the environment for acidity and nutrients. Also they check to see if they can replicate
by checking if it’s telomere size is above 0. If the tests fail the cell enter apoptosis and
will leave a blank space for other cells to grow. After that cells will remove a quantity
of nutrients from the nutrient space and will check if they can enter the cell life-cycle.
If they aren’t allowed to enter the life-cycle, they will rest in a quiescent state G0 and
then the step will end. If they can enter the normal life-cycle then they will go through
the phases G1, S and G2. After this they will be checked for mutations in the genome
and if mutations are detected then the cell will undergo apoptosis. Only if the cell
escapes mutation detection will it then be allowed to go into the mitosis phase (M).

After this step all cells will eventually suffer apoptosis with a probability defined by
the user.

Design Concepts

Genome
Although the hallmarks of cancer are the expression of gene mutations, they aren’t

mapped in reality to particular singular genes. Each might be the result of several
mutations in real cancer tumors. As this genes aren’t yet fully discovered and
understood in our model we’ve decided to include a “genome” that represents each of
the hallmarks of cancer in a manner that each “gene” represents one of the hallmarks,
each one having an equal probability of mutating. Further more, the evidence of
genetic instability isn’t in itself a gene mutation, but a result of multiple mutations
observed in real cancer masses. In this model the genetic instability is also modeled
as a gene that will affect the probability of mutation of other cells by a factor of 10.
This leads to a model genome that is no more than a vector of 6 integers which value
will determine if a particular gene is mutated or not. As we won’t model metastasis
mutation this vector is composed of 5 hallmarks plus genetic instability.

Emergence
The tissue dynamics emerge from the behavior of the individual cells. Each cell

has it’s own life-cycle and rules on how each cell acts according to it’s environment.

Adaptation
Cells can go into a quiescent state if their environment changes. If the pHs of the

cell lattice falls bellow a certain value then the cell enters the G0 phase. This
threshold is 7.1 for normal cells and 6.4 for cancerous cells. Cells that have the induce
angiogenesis mutation also can send requests for vascular cells to proliferate in their
direction if the nutrients in the lattice fall under a minimum value.

Sensing
Cells sense their environment in the form of chemical signals. In this model cells

perceive nutrients concentration, pH and growth inhibitors.

Interaction
Cells act with each other by detecting the composition of the lattice they occupy.

This can be nutrients or pH or the presence of other cells. Further, cancer cells can
induce angiogenesis in the vascular system interacting at a longer distance than
normal cells. Also, tumorous cells will stochastically compete with its neighbors for
the occupancy of lattice locations.

Stochasticity

The model dynamics use several stochastic values to determine how cells will act.
This is due to the fact that the CA isn’t governed by a set of rules that respond in the
same manner to a repetition of the same environment. Instead, the cell will
probabilistic act in reaction to their surroundings. The features that require
stochasticity values are defined by probabilities of occurrence and are defined and can
be controlled by the user in the table of parameters.

Observation
The data is collected in tabular text files with the number of cancerous cells over

time. Also graphs are produced that describe the percentage of cells with different
mutations and also percentages of the number of mutations.

Details

Initialization

The model is initialized by the creation of a 2D NxN lattice and by the creation of
the state vectors that will old information regarding nutrients concentration and acid
concentration. At the beginning nutrients will be 0.0 at each location and the pH will
be 7.4 for all locations.

Then one natural cell is created in the center of this lattice with a genome that has
no mutations. At the same place one vascular cell is created and the initial quantity of
nutrients is placed in this location. The vascular system cells can coexist with other
cell types in the same lattice space, as they are considered independent.

Input

Nutrients Update
As the Cells in the model go through every step of their life, they have to consume

resources. In our model resources are called nutrients and they are updated at each
step of the simulation. The idea that we implemented in this model is that the
concentration of nutrients at each vascular cell will always be constant. The idea is
that the blood vessel will be able to transport nutrients to all microvessels equally
without being perturbed by the size of the vascular system in the model. After the
Nutrients Update they will be diffused by a simple diffusion mechanism discussed in
the submodels section.

Acid Removal
Acid production is also removed by the vascular system. In our model the acid

produced by cancer cells will diffuse by the same simple mechanism used by
nutrients. At each step the vascular system will remove the excess acid in that location

allowing the diffusion of high acid concentrations towards the vascular system to
removal.

Submodels

Diffusion Model for Nutrients
In a steady state system, a Fick Law describes diffusion of a compound in a

solution and the diffusion flux is related to a diffusion coefficient D that is
characteristic of the species in question and proportional to the gradient of
concentration that traverses the control volume. This relation as the following form
for a one-dimensional control volume:

!

J
i
= "D

#C
i

#x
 (1)

This approach would lead us to have to perform a multitude of calculations
including the integration of this equation on the entire discrete space demanding more
power from the computational level and making the model to make some assumptions
on frontier conditions. Therefore we tried a different approach to simulate the
diffusion of nutrients. Once any perturbation in concentration would form a local
gradient of concentration with it’s neighbors, we’d assume that at each time step a
locally steady-state would be achieved. This meant that at each step for each position
in the lattice the step+1 concentration would be calculated as the cell concentration
summed with the concentrations in the Moore neighbors cells and then averaged. This
would make nutrients diffuse locally without the need to perform more complicate
calculations.

Diffusion Model for H+
The acid diffusion is implemented as in the nutrients space, with a small

difference. The local steady state isn’t achieved in every step but instead it is assumed
that it would be achieved only after a finite number of steps (the model uses 5 time
steps). This model means that the resulting increase or decrease of acid concentration
will be only 20% of what it would if the diffusion was locally steady-state at each
step.

Vascular Growth Model
The vascular system grows in response to cells that have the sustained

angiogenesis mutation. In such cases if the mutated cell has a low concentration of
nutrients surrounding it, it will send a signal to the nearest vascular cell calling them
to replicate in it’s direction. The vascular cell then calculates the direction toward the
signal origin and one new vascular cell is created in it’s Moore neighborhood only if
that place is empty (of vascular cells) and it hasn’t a vascular cell in that location
Moore neighborhood other than it’s parent. Although this allows, in some cases, the

expansion of the vascular system from the trunk instead the leafs it creates structures
that can somehow mimic the vascular system of real tissues.

Growth-Inhibitors Model.
We’ve implemented growth inhibitors by contact dependent signals. This means

that a cell will enter G0 phase when all it’s 8 surrounding lattice places are occupied.
Normal cells won’t go into their life-cycle if the count off cell in the Moore
neighborhood is 8. Cells that have the insensitivity to growth-inhibitory mutation can
escape growth inhibitors and will enter the G1 phase undergoing subsequent
replication. Then the daughter cell will compete with one of the neighbors with a
probability defined by the ProbCompeteNeighbor parameter.

Gompertzian Growth
The Gompertzian Growth is a population growth expression that is an exponential

with a constant exponential. It assumes the form:

!

V =V
0
" e

A

B
1#e #Bt()

$

%
&

'

(
)

 (2)

Where A and B are equation parameters.

4 Experimentation and Results

In the experimentation of the model we’ve decided that we needed to explore the
space of possibilities in a way that would make the model behave as closely as
possible to the real understanding of how tumors grow. For that we’ve designed a set
of experiments to search for local zones where tumor growth would seam similar to
real tumor growth.

The proposed model was first run with a broad range of parameters to find local
zones of interest in the space of solutions. After those local spaces have been
identified the simulation was then run in a batch of tests in that local zones to verify
that the outcome of the results where indeed due to the local zone parameters, and not
from some stochastic behavior in one particular run.

As the model has some stochastic behavior in it’s dynamics, sometimes the initial
cells would mutate and would be detected rapidly. This would make those few cells
enter apoptosis and the simulation would stop early. We’ve defined that for a run to
be considered successful it would have to produce a tissue (tumorous or not) that
would grow to the lattice boundaries or that would run for 2000 steps. Runs that
didn’t comply with this criteria where discarded.

The next figure shows the result of one of those runs.

Figure 5 – Example of one model run.

In this figure we can see the all system modeled at the end of a run. The figure is
composed of 4 layers that superimpose the cell space, the acid space, the nutrients
space and the vascular system. For a better understanding of the results, next we
present this four layer in a separate way.

Figure 6 – Cell Space Layer

This figure represents the fully developed cancer cells in Blue. Pink cells are cells
that had some kind of mutation but didn’t present all hallmarks of cancer. It is also
visible that in the center region we can observe empty spaces because of acid
concentration in this zones being higher then the threshold to sustain the existence of
cells.

Figure 7 – Acidity Space

In this figure dark zones are more acid than blue zones. As the cancer growths
inner zones tend to be more acid and that lead to the observed necrosis in figure 6. We
can also observe that the vascular system, responsible for removing acid, is detected
by the formed pattern because those zones have a higher pH (lower acidity).

Figure 8 – Nutrients Space

As the vascular system develops due to the sustained angiogenesis mutation
nutrients diffuse to all the tissue. This figures shows that in this set of parameters the
cells are fed with sufficient nutrients.

Figure 9 – Vascular Space

The vascular space shows that although it doesn’t grow with a mapping to real
vascular systems, as a new branch can emerge from any point at the tree and not just
the leafs, it still produces natural-looking fractal-like structures that emerge
endogenously. The pattern observed in this layer is also observed in the acidity layer
as the vascular space is also responsible for removing acid from the tissue.

From the initial analysis we’ve defined a set of parameters that were then run in a

batch process. These were the parameters described in table 2. The model was run 53
times and from this 6 where discarded and 47 used for further analysis. From this 47
runs we obtained the following statistics:

Table 3 – Statistics for the 47 runs.

 Average StdDev
Number of Cancer Cells 5869 2833
Ticks 732 342

The representation of the runs in a graph indicates that the appearance of tumorous

cells is sparse and probably is due to stochasticity of the model.

Figure 10 – Number of cancer cells on all 47 runs.

From the previous figure we can observe that although the emergence of tumorous
cells is randomly sparse, the cancer growth of each run follows a similar growth. This
fact leads us to discard the ticks where no cancer was observed in order to analyze the
dynamics of the growth in a comparable manner. After representation of the 47 runs
in a log-log graph we’ve ended obtaining the following representation:

Figure 11 – log-log graph of the 47 runs.

The slope of the curves in this log-log figure is an indicator that the runs behave in
a power law of the form:

!

y = a " x
b (3)

From the previous figure we can see that the cancer growth is ruled in a two
different process. While the number of cancer cells is small, (under 10) the growth is

approximately linear, but then the growth assumes a power law growth. The b
parameter determines the slope of the log-log graph and as been calculated for the 47
parameters. We’ve calculated a value of 2,19 with a standard deviation of 0,21 for the
exponent b. The a parameter is a factor of scale that we’ve found to be 0,42 with a
standard deviation of 0,32. This leads to the following equation with a confidence
interval of 95%:

!

y = (0.42 ± 0.64) " x
2.19±0.42 (4)

The error in the a parameter means that there’s a great dispersion of values. On the
other hand the power parameter as a smaller error meaning that the behavior of the
growth is very similar for the different runs.

 These values show an interesting aspect of the dynamics of tumor growth in this
model. The growth doesn’t behave in a Gompertzian way as it was verified by some
authors and it also doesn’t grow linear as in the study of Brú et al., falling somewhere
in between these two boundaries. This indicates that the inclusion of acidity in the
model decreases the rate of growth but by itself might not be sufficient to explain the
observed growths in in vivo and in vitro situations. It is also possible that the set of
parameters used conditioned the results and other local zones of interest in the space
of solutions, might need to be explored.

5 Discussion

We’ve modeled the growth of a tumorous tissue in silico using a hybrid cellular
automaton. This differs from the traditional cellular automata by the inclusion of
stochasticity ruled by probabilities that the user can define. The traditional cellular
automata models use a very well defined set of rules and states that each agent can be
in, usually in a reactive manner to the environment. In our case our agents are reactive
to the environment but the decision process is stochastic in some aspects. Also in
traditional CA all lattice places have those set of rules and states. In our approach the
lattice is empty and agents are placed according to the dynamics of the model and
only then they are part of the CA. Also if conditions for apoptosis are present, agents
can be removed from the lattice.

This work showed that it is possible to achieve some descriptive understanding of
the cancer growth, although the results on the dynamics fall between the models of
Gompertzian growth and linear growth. We’ve found that in this case a power law
describes the growth more appropriately. This implies that further research must be
done in the mechanisms of the model and we’ve must then analyze some aspects that
we think are pertinent. First, we need to do a scale analysis to ensure that the power
law is maintained through a bigger environment. Secondly, we must investigate other
zones of interest in the space of parameters. Thirdly, we must reflect if the 2D
constrains in space are responsible for the observed dynamics as real tumors grow in
3D.

Also the implementation of a CA model as the base for the simulation has it’s
limitations, as it implies that discrete values occupy each lattice position. This

discontinuity could be eliminated if some aspects of the CA would be modeled by
differential equations with certain boundary conditions. This would increase the
computational requirements for this model. Also the use of a 2D lattice might be
responsible for the divergence between the power law observed and the other two
models usually described in literature. Further work should include this aspect into
account.

Our approach showed that with simple mechanisms to describe basic phenomena,
the simulation could mimic, at least in a qualitatively manner, the real process of
cancer growth.

We believe that the approach we took has a descriptive value and shows that the
techniques used can be employed in practical cases of interest for the scientific
community.

6 Further Research

This study presented a general overview how methodologies used in the field of
complexity sciences can be applied to biology and particularly how cellular automata
can be extended to show some insights on how biological systems evolve. Although
this work showed that is possible to model cancer growth by these methodologies,
further research should be done in ways that could improve the acceptance of these
methodologies in this field and to achieve a greater quantitative understanding of the
dynamics of tumor growth.

This model assumes that the cells live in a 2D tissue. This is obviously a limitation
that the reality doesn’t have. Further research should include a 3D lattice to
investigate this problem, as the growth rate observed might be a result of a 2D
geometry.

Research in different topologies of the lattice should be considered. Cells aren’t
squares in reality and other topologies should be considered. Voronoi spaces could be
implemented as a solution. This Voronoi cells could me modeled in a 2D space or in a
3D.

This model doesn’t explain the inner cell mechanisms as it pretends to replicate
macroscopic phenotypic events. This model assumes for example, that induced
angiogenesis is controlled by a single gene of our hypothetical genome. In reality
angiogenesis is regulated by a variety of signals. Therefore future research should
include some micro models of the pathways that produce these signals. Also chemical
signaling in this model is considered instantaneous, which isn’t verified in reality.
Some sort of transport mechanism should be considered, probably with the
application of concepts developed in the nanomachines fields.

Another aspect that should be considered in future studies is that in our model all
phenotype switches are equal probable. That isn’t realistic as some phenotypic
manifestations are a cause of more gene mutations than others. Also the mapping of a
phenotype manifestation to a single gene isn’t exact and further research should be

done to allow the inclusion of other genes in the model genome, and also to
investigate the part of dumb DNA in the process.

Although our genes are equi-probable making all mutation sequences possible in
the formation of cancer cells, further research should include mechanisms to detect
which mutation sequences are more prevalent. Also the mechanisms at the several
levels of abstraction that would be implemented should be chosen to mimic reality to
the possible extent allowing a more approximate mapping between the model and
reality.

The modeling of the vascular system in our model is very simple, allowing the
growth of the capillaries from the nearest segment. The branches can therefore be
formed from any segment of the vascular system and not just from the leaves, which
is a departure from reality. In futures implementations this should be addressed
allowing representing the vascular system as a network. This should allow further
research on the way the angiogenesis is controlled by tumor cells.

7 References

Abott R.G.; Forrest, S.; Pienta, J. K.; Simulating the Hallmarks of Cancer; Artificial Life, Vol
12 (2006) , n.º4, 617 - 634

Alberts, B; Bray, D.; Johnson, A.; Lewis J.; Raff M.; Roberts, K.; Walter, P.: Essential Cell
Biology, (1998) Graland Publishing inc. New York & London.

Brú, A.; Alberto, S.; Subiza, J.L.; García-Asejo, J.L.,; Brú, I.: The Universal Dynamics of
Tumor Growth; Biophysical Journal, Volume 85 (Nov 2003) 2948-2961

Grimm, V. et al. ; A Standard Protocol for Describing Individual-based and Agent-based
Models: Ecological Modelling 198 (2006) 115-126

Hanahan, D.; Weinberg, R. A.: The hallmarks of cancer. Cell, 100 (2000), 57 – 70.
Harel, D.; Comprehensive and Realistic Modeling of Biological Systems; Proceedings of the

2006 Winter Simulation Conference.
Hiyama, S.; Moritani, Y.; Suda, T.; Egashira, R.; Enomoto, A.; Moore, M.; Nakano, T.:

Moelcular Communication; Proc. of the 2005 NSTI Nanotechnology Conference, 2005
Kansal, A.R; Torquato, S.; Harsh IV, G.R.; Chiocca, E.A.; Deisboeck, T.S; Simulated Brain

Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton; J. theor. Biol.
(2003) 203, 367-382

Parkin, D. M.; Bray, F., Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA: A Cancer
Journal for Clinicians, 55, (2005) 74 – 108.

Patel, A.A.; Gawlinksi, E.T.; Lemieux, S.K.; Gatenby, R.A.: A Cellular Automaton Model of
Early Tumor Growth and Invasion: The Effects of Native Tissue Vascularity and Increased
Anaerobic Tumor Metabolism; J. theor. Biol. (2001) 213, 315-331

Wishart, D.; Yang, R.; Arndt D.; Tang, P.; Cruz, J.: Dynamic cellular automata: an alternative
approach to cellular simulation; In Silico Biology 4, 0015 (2004); ©2004, Bioinformation
Systems e.V.

Whitesides, G.M., The Once and Future Nanomachine; Scientific American, Sep, 2001.

Annexes

CellCom

 1 /*
 2 * Model.java
 3 *
 4 * Created on May 18, 2007, 5:38 PM
 5 *
 6 */
 7
 8 package cellcom;
 9 import java.awt.Color;
 10 import java.util.ArrayList;
 11 import java.util.Vector;
 12 import uchicago.src.sim.analysis.DataRecorder;
 13 import uchicago.src.sim.analysis.OpenSequenceGraph;
 14 import uchicago.src.sim.analysis.Sequence;
 15 import uchicago.src.sim.engine.BasicAction;
 16 import uchicago.src.sim.engine.Schedule;
 17 import uchicago.src.sim.engine.SimInit;
 18 import uchicago.src.sim.engine.SimModelImpl;
 19 import uchicago.src.sim.gui.DisplaySurface;
 20 import uchicago.src.sim.gui.Object2DDisplay;
 21 import uchicago.src.sim.space.Object2DGrid;
 22 import uchicago.src.sim.space.Object2DTorus;
 23 /**
 24 * Model Class for CellCom. Implements the SimModelImpl rquired by Repast to run
 25 * the simulation.
 26 * @author david
 27 */
 28 public class Model extends SimModelImpl {
 29 // Repast Parameters
 30 private DataRecorder recorder;
 31 private int worldXSize=150;
 32 private int worldYSize=150;
 33 private Schedule schedule;
 34
 35 /**
 36 * Space that holds the simulation Cells
 37 */
 38 public Object2DTorus cellSpace;
 39 /**
 40 * Space that holds the vascular system
 41 */
 42 public Object2DTorus vascularSpace;
 43 /**
 44 * Space that holds the nutrients
 45 */
 46 public Object2DTorus nutrienteSpace;
 47 /**
 48 * Space that is used to update the nutrients space with the simple diffusion
mechanism
 49 */
 50 public Object2DTorus nutrienteNextSpace;
 51 /**
 52 * Space used to draw the nutrients space
 53 */
 54 public Object2DTorus moleculeSpaceSpace;
 55 /**
 56 * Space that holds de Acid Space
 57 */
 58 public Object2DTorus acidSpace;
 59
 60 private DisplaySurface dsurf;
 61 private OpenSequenceGraph numCellPhenotype;
 62 private OpenSequenceGraph numCellMutations;
 63 /**
 64 * Counter for the number of cells produced in the model
 65 */
 66 public int cellNumber=0;
 67 /**
 68 * Counter for the number of vascular cells produced in the simulation
 69 */
 70 public int vascularNumber=0;
 71
 72 ArrayList cells;
 73 ArrayList vascular;
 74 ArrayList nutrients;
 75 ArrayList acids;

Page 1

CellCom

 76
 77
 78 // Parameters of the stocastic Model...
 79 private double VascularNutrients=5; // mM
 80 /**
 81 * Probability of detection of damaged cells
 82 */
 83 public double probDetectionDamageCells=0.97;
 84 /**
 85 * Probability of residual apoptosis
 86 */
 87 public double residualApoptosisProbability=0.1;
 88 /**
 89 * Probability of comepetition with neighbor cells
 90 */
 91 public double probCompeteNeighboor=0.4;
 92 /**
 93 * Probability of individual gene mutation
 94 */
 95 public double probNormalGeneMutation=0.01;
 96 /**
 97 * Multipling factor for genetic instability factor
 98 */
 99 public double multIncreaseGeneMutation=10;
100
101 /**
102 * Telomere Size - limits the number of mitosis a cell can undergo
103 */
104 public int telomereSize=10;
105
106 /**
107 * Creates a new instance of Model
108 */
109 public Model() {
110 }
111
112 /**
113 * Passes the model parameters to the Repast Controller
114 * @return Array of Parameters
115 */
116 public String[] getInitParam() {
117 return new String[]{
118 "WorldXSize",
119 "WorldYSize",
120 "ProbDetectionDamageCells",
121 "ResidualApoptosisProbability",
122 "ProbCompeteNeighboor",
123 "ProbNormalGeneMutation",
124 "TelomereSize",
125 "VascularNutrients"
126 };
127 }
128 //
--
----- BEGIN
129 /**
130 * Begin method - Called by Repast controller
131 */
132 public void begin() {
133 System.out.println("begin()");
134 buildModel();
135 buildSchedule();
136 buildDisplay();
137
138 dsurf.display();
139 numCellPhenotype.display();
140 numCellMutations.display();
141 }
142
143 // --
BUILD DISPLAY
144 private void buildDisplay() {
145 System.out.println("buildDisplay()");
146
147 Object2DDisplay cellDisplay = new Object2DDisplay(cellSpace);
148 cellDisplay.setObjectList(cells);

Page 2

CellCom

149
150 Object2DDisplay vascularDisplay = new Object2DDisplay(vascularSpace);
151 vascularDisplay.setObjectList(vascular);
152
153 Object2DDisplay nutrientsDisplay = new Object2DDisplay(moleculeSpaceSpace);
154 nutrientsDisplay.setObjectList(nutrients);
155
156 Object2DDisplay acidDisplay = new Object2DDisplay(acidSpace);
157 acidDisplay.setObjectList(acids);
158
159
160 dsurf.addDisplayableProbeable(cellDisplay,"Cells");
161 dsurf.addDisplayableProbeable(acidDisplay,"pH");
162 dsurf.addDisplayableProbeable(nutrientsDisplay,"Nutrients");
163 dsurf.addDisplayableProbeable(vascularDisplay,"Vascular");
164 dsurf.setBackground(Color.BLACK);
165 /*
166 * ---
PERCENTAGE OF CELLS WIHT EACH TYPE OF MUTATION
167 */
168 numCellPhenotype.addSequence("Genetic Intability", new Sequence(){
169 public double getSValue(){
170 double num=0.0;
171 for (int i = 0; i < cells.size(); i++) {
172 Cell a = (Cell)cells.get(i);
173 if (a.geneticInstability){
174 num++;
175 }
176 }
177 num=100*num/cells.size();
178 return num;
179 }
180 }
181);
182
183 numCellPhenotype.addSequence("Evade Apoptosis", new Sequence(){
184 public double getSValue(){
185 double num=0.0;
186 for (int i = 0; i < cells.size(); i++) {
187 Cell a = (Cell)cells.get(i);
188 if (a.evadeApoptosis){
189 num++;
190 }
191 }
192 num=100*num/cells.size();
193 return num;
194 }
195 }
196);
197
198 numCellPhenotype.addSequence("Sustained Agiogenesis", new Sequence(){
199 public double getSValue(){
200 double num=0.0;
201 for (int i = 0; i < cells.size(); i++) {
202 Cell a = (Cell)cells.get(i);
203 if (a.sustaindedAgiogenisi){
204 num++;
205 }
206 }
207 num=100*num/cells.size();
208 return num;
209 }
210 }
211);
212
213 numCellPhenotype.addSequence("Ignore Growth Inhibit", new Sequence(){
214 public double getSValue(){
215 double num=0.0;
216 for (int i = 0; i < cells.size(); i++) {
217 Cell a = (Cell)cells.get(i);
218 if (a.ignoreGrowthInhibit){
219 num++;
220 }
221 }
222 num=100*num/cells.size();
223 return num;

Page 3

CellCom

224 }
225 }
226);
227
228 numCellPhenotype.addSequence("Limitless Replication", new Sequence(){
229 public double getSValue(){
230 double num=0.0;
231 for (int i = 0; i < cells.size(); i++) {
232 Cell a = (Cell)cells.get(i);
233 if (a.limitlessReplication){
234 num++;
235 }
236 }
237 num=100*num/cells.size();
238 return num;
239 }
240 }
241);
242
243 numCellPhenotype.addSequence("Growth Signal", new Sequence(){
244 public double getSValue(){
245 double num=0.0;
246 for (int i = 0; i < cells.size(); i++) {
247 Cell a = (Cell)cells.get(i);
248 if (a.growthSignal){
249 num++;
250 }
251 }
252 num=100*num/cells.size();
253 return num;
254 }
255 }
256);
257
258 /*
259 * --
PERCENTAGE OF CELLS WITH X NUMBER OF MUTATIONS
260 */
261 numCellMutations.addSequence("0 Mutations", new Sequence(){
262 public double getSValue(){
263 double num=0.0;
264 for (int i = 0; i < cells.size(); i++) {
265 Cell a = (Cell)cells.get(i);
266 if (a.getGenome()==0){
267 num++;
268 }
269 }
270 num=100*num/cells.size();
271 return num;
272 }
273 }
274);
275 numCellMutations.addSequence("1 Mutations", new Sequence(){
276 public double getSValue(){
277 double num=0.0;
278 for (int i = 0; i < cells.size(); i++) {
279 Cell a = (Cell)cells.get(i);
280 if (a.getGenome()==1){
281 num++;
282 }
283 }
284 num=100*num/cells.size();
285 return num;
286 }
287 }
288);
289 numCellMutations.addSequence("2 Mutations", new Sequence(){
290 public double getSValue(){
291 double num=0.0;
292 for (int i = 0; i < cells.size(); i++) {
293 Cell a = (Cell)cells.get(i);
294 if (a.getGenome()==2){
295 num++;
296 }
297 }
298 num=100*num/cells.size();

Page 4

CellCom

299 return num;
300 }
301 }
302);
303 numCellMutations.addSequence("3 Mutations", new Sequence(){
304 public double getSValue(){
305 double num=0.0;
306 for (int i = 0; i < cells.size(); i++) {
307 Cell a = (Cell)cells.get(i);
308 if (a.getGenome()==3){
309 num++;
310 }
311 }
312 num=100*num/cells.size();
313 return num;
314 }
315 }
316);
317 numCellMutations.addSequence("4 Mutations", new Sequence(){
318 public double getSValue(){
319 double num=0.0;
320 for (int i = 0; i < cells.size(); i++) {
321 Cell a = (Cell)cells.get(i);
322 if (a.getGenome()==4){
323 num++;
324 }
325 }
326 num=100*num/cells.size();
327 return num;
328 }
329 }
330);
331 numCellMutations.addSequence("5 Mutations", new Sequence(){
332 public double getSValue(){
333 double num=0.0;
334 for (int i = 0; i < cells.size(); i++) {
335 Cell a = (Cell)cells.get(i);
336 if (a.getGenome()==5){
337 num++;
338 }
339 }
340 num=100*num/cells.size();
341 return num;
342 }
343 }
344);
345 numCellMutations.addSequence("6 Mutations", new Sequence(){
346 public double getSValue(){
347 double num=0.0;
348 for (int i = 0; i < cells.size(); i++) {
349 Cell a = (Cell)cells.get(i);
350 if (a.getGenome()==6){
351 num++;
352 }
353 }
354 num=100*num/cells.size();
355 return num;
356 }
357 }
358);
359
360 }
361 //
--
-- BUILD MODEL
362 private void buildModel() {
363
364 System.out.println("buildModel()");
365 cellSpace = new Object2DTorus(this.getWorldXSize(),this.getWorldYSize());
366 vascularSpace = new Object2DTorus(this.getWorldXSize(), this.getWorldYSize());
367 nutrienteSpace = new Object2DTorus(this.getWorldXSize(), this.getWorldYSize());
368 nutrienteNextSpace = new Object2DTorus(this.getWorldXSize(), this.
getWorldYSize());
369 moleculeSpaceSpace = new Object2DTorus(this.getWorldXSize(), this.
getWorldYSize());
370 acidSpace = new Object2DTorus(this.getWorldXSize(),this.getWorldYSize());

Page 5

CellCom

371
372 int nx = (int)(this.getWorldXSize()/2);
373 int ny = (int)(this.getWorldYSize()/2);
374
375 // Inicaliza espaço de Nutrientes
376
377 for (int i = 0; i < nutrienteSpace.getSizeX(); i++) {
378 for (int j = 0; j < nutrienteSpace.getSizeY(); j++) {
379 nutrienteSpace.putValueAt(i,j,0.0);
380 nutrienteNextSpace.putValueAt(i,j,0.0);
381
382 MoleculeSpace a1 = new MoleculeSpace(this);
383 a1.setXY(i,j);
384 moleculeSpaceSpace.putObjectAt(i,j,a1);
385 nutrients.add(a1);
386
387 Acid a2 = new Acid(this);
388 a2.setXY(i,j);
389 a2.setPH(7.4);
390 acidSpace.putObjectAt(i,j,a2);
391 acids.add(a2);
392 }
393 }
394
395 // Add 1st Cell
396 Cell c1 = new Cell(this);
397 c1.setXY(nx,ny);
398 cellSpace.putObjectAt(nx,ny,c1);
399 cells.add(c1);
400
401 // Add 1st Vascular
402 Vascular v1 = new Vascular(this);
403 v1.setXY(nx,ny);
404 v1.diffuseNutrients(this.getVascularNutrients()*15);
405 vascularSpace.putObjectAt(nx,ny,v1);
406 vascular.add(v1);
407 // Add 1st Nutrient Concentration...
408
409 // nutrienteSpace.putValueAt(nx,ny,this.getVascularNutrients()*15);
410
411
412 //

RECORDER
413
414 recorder = new DataRecorder("./data.txt",this);
415 recorder.createNumericDataSource("numCancerCells", this, "getNumCancerCells");
416
417
418 }
419
420 //
--
----- SCHEDULE
421
422 private void buildSchedule() {
423 schedule = new Schedule();
424 schedule.scheduleActionBeginning(0, this, "mainAction");
425 // schedule.scheduleActionBeginning(0,this,);
426
427 schedule.scheduleActionAtInterval(1, new BasicAction() {
428 public void execute() {
429 recorder.record();
430 }
431 });
432
433 schedule.scheduleActionAtInterval(10,this,"updatePlots");
434
435 schedule.scheduleActionAtEnd(recorder , "writeToFile");
436 }
437
438 /**
439 * Step Action that the model has to run each tick
440 */
441 public void mainAction(){
442 // Vascular... actualizar valores de nutrientes no sistema vascular

Page 6

CellCom

443
444 // long time1=System.nanoTime();
445
446 if (stopSimulation()){
447 this.stop();
448 }
449
450 // Difuse Nutrientes;
451 for (int i = 0; i < vascular.size(); i++) {
452 Vascular v = (Vascular)vascular.get(i);
453 double vh=nutrienteSpace.getValueAt(v.getX(),v.getY());
454 v.diffuseNutrients(this.getVascularNutrients()+vh);
455 Acid a = (Acid)acidSpace.getObjectAt(v.getX(),v.getY());
456 a.setPH(7.4);
457 }
458
459 this.diffuseNutrients();
460 this.diffuseAcid();
461
462
463 /* Celulas Entrar no ciclo de vida
464 * verificam nível de nutrientes
465 * Se < a => pedem Vascular
466 * Se a > e < b estão em quiscent state
467 * Se > b mitose
468 */
469 int n=cells.size();
470 uchicago.src.sim.util.SimUtilities.shuffle(cells);
471 for (int i = n-1; i >= 0; i--) {
472 Cell a = (Cell)cells.get(i);
473
474 a.step();
475 }
476
477
478
479
480
481
482
483 // System.out.println(System.nanoTime()-time1);
484
485
486 }
487 /**
488 * Updates the Plots of the simulation
489 */
490 public void updatePlots(){
491
492 dsurf.updateDisplay();
493 numCellPhenotype.step();
494 numCellMutations.step();
495
496 }
497 /**
498 * Diffusion sub-model that performs before each individual cell step
499 */
500 public void diffuseNutrients(){
501 // Difundir nutrientes
502 for (int i = 0; i < this.getWorldXSize(); i++) {
503 for (int j = 0; j < this.getWorldYSize(); j++) {
504 Vector viz=nutrienteSpace.getMooreNeighbors(i,j, false);
505 double soma=0.0;
506 for (int k = 0; k < viz.size(); k++) {
507 soma+=((Double)viz.get(k)).doubleValue();
508 }
509 soma+=nutrienteSpace.getValueAt(i,j);
510 soma = soma / 9.0;
511 nutrienteNextSpace.putValueAt(i,j,soma);
512 }
513 }
514 for (int i = 0; i < nutrienteSpace.getSizeX(); i++) {
515 for (int j = 0; j < nutrienteSpace.getSizeY(); j++) {
516 nutrienteSpace.putValueAt(i,j,nutrienteNextSpace.getValueAt(i,j));
517 }
518 }

Page 7

CellCom

519 }
520 /**
521 * Diffusion of Acid sub-model. Prepares Acid space to be interpreted by cells in
522 * their individual steps
523 */
524 public void diffuseAcid(){
525 for (int i = 0; i < this.getWorldXSize(); i++) {
526 for (int j = 0; j < this.getWorldYSize(); j++) {
527 Vector viz=acidSpace.getMooreNeighbors(i,j, false);
528 double soma=0.0;
529 for (int k = 0; k < viz.size(); k++) {
530 Acid a = (Acid)viz.get(k);
531 soma+=a.getConcH();
532 }
533 Acid eu = (Acid)acidSpace.getObjectAt(i,j);
534
535 soma+=eu.getConcH();
536 soma = soma / 9.0;
537
538 eu.setNextConcH(eu.getConcH()+0.2*(soma-eu.getConcH()));
539 }
540 }
541 for (int i = 0; i < acidSpace.getSizeX(); i++) {
542 for (int j = 0; j < acidSpace.getSizeY(); j++) {
543 Acid eu = (Acid)acidSpace.getObjectAt(i,j);
544 eu.setConcH(eu.getNextConcH());
545 }
546 }
547 }
548 /**
549 * Getter for the number of cancer cell
550 * @return number of cancer cells
551 */
552 public int getNumCancerCells(){
553 int out=0;
554 for (int i = 0; i < cells.size(); i++) {
555 Cell a = (Cell)cells.get(i);
556 if (a.getGenome()==6){
557 out++;
558 }
559 }
560 return out;
561 }
562
563 /**
564 * Stops the simulation if certain conditions are met
565 * @return Returns true if conditions are met.
566 */
567 public boolean stopSimulation(){
568
569 if (cells.size()==0){
570 return true;
571 }
572
573 for (int i = 0; i < this.getWorldXSize(); i++) {
574 if (cellSpace.getObjectAt(i,0)!=null){
575 return true;
576
577 }
578 if (cellSpace.getObjectAt(i,this.getWorldYSize()-1)!=null){
579 return true;
580 }
581 }
582 for (int i = 0; i < this.getWorldYSize(); i++) {
583 if (cellSpace.getObjectAt(0,i)!=null){
584 return true;
585 }
586 if (cellSpace.getObjectAt(this.getWorldXSize()-1,i)!=null){
587 return true;
588 }
589 }
590 if (this.getTickCount()>2000){
591 return true;
592 }
593
594 return false;

Page 8

CellCom

595 }
596
597 //
--
----- SETUP
598 /**
599 * Setup Method - Called by the repast controller
600 */
601 public void setup() {
602
603 cellSpace=null;
604 vascularSpace=null;
605
606 nutrienteSpace=null;
607 nutrienteNextSpace=null;
608
609 moleculeSpaceSpace=null;
610 acidSpace=null;
611
612 cells=null;
613 vascular=null;
614 nutrients=null;
615 acids=null;
616 schedule=null;
617
618 if (dsurf!=null){
619 dsurf.dispose();
620 }
621 dsurf=null;
622
623 if (numCellPhenotype!=null){
624 numCellPhenotype.dispose();
625 }
626 numCellPhenotype=null;
627
628 if(numCellMutations!=null){
629 numCellMutations.dispose();
630 }
631 numCellMutations=null;
632
633 System.gc();
634
635 cells = new ArrayList();
636 vascular= new ArrayList();
637 nutrients = new ArrayList();
638 acids = new ArrayList();
639
640
641 schedule = new Schedule();
642 dsurf = new DisplaySurface(this, "CellCom");
643 numCellPhenotype = new OpenSequenceGraph("% Cell With Phenotype", this);
644 numCellMutations = new OpenSequenceGraph("% Of Cell Wiht X Mutations", this);
645
646 registerDisplaySurface("CellCom",dsurf);
647 this.registerMediaProducer("Plot", numCellPhenotype);
648 this.registerMediaProducer("Plot2", numCellMutations);
649
650 // System.out.println("setup()");
651 }
652
653 /**
654 * Getter for the step scheduler. Called by repast controller
655 * @return Returns a Schedule
656 */
657 public Schedule getSchedule() {
658 return schedule;
659 }
660
661 /**
662 * Getter for the name of the simulation
663 * @return String with the name of the simulation
664 */
665 public String getName() {
666 return "CellCom";
667 }
668

Page 9

CellCom

669 //
--SETTERS
AND GETTERS
670
671
672 /**
673 * Getter for the ProbCompeteNeighboor parameter
674 * @return Probability
675 */
676 public double getProbCompeteNeighboor() {
677 return probCompeteNeighboor;
678 }
679
680 /**
681 * Getter for the ProbDetectionDamageCells parameter
682 * @return Probability
683 */
684 public double getProbDetectionDamageCells() {
685 return probDetectionDamageCells;
686 }
687
688 /**
689 * Getter for the TelomereSize parameter
690 * @return Telemore Size
691 */
692 public int getTelomereSize() {
693 return telomereSize;
694 }
695
696 /**
697 * Getter for the vascular system arraylist
698 * @return ArrayList with Vascular Objects
699 */
700 public ArrayList getVascular() {
701 return vascular;
702 }
703
704 /**
705 * Getter for the XX world Size
706 * @return XX world size
707 */
708 public int getWorldXSize() {
709 return worldXSize;
710 }
711
712 /**
713 * Getter for the YY world size
714 * @return YY world size
715 */
716 public int getWorldYSize() {
717 return worldYSize;
718 }
719
720 /**
721 * Setter for the ProbCompeteNeighboor parameter
722 * @param probCompeteNeighboor Probability
723 */
724 public void setProbCompeteNeighboor(double probCompeteNeighboor) {
725 this.probCompeteNeighboor = probCompeteNeighboor;
726 }
727
728 /**
729 * Setter for the ProbDetectionDamageCells parameter
730 * @param probDetectionDamageCells Probability
731 */
732 public void setProbDetectionDamageCells(double probDetectionDamageCells) {
733 this.probDetectionDamageCells = probDetectionDamageCells;
734 }
735
736 /**
737 * Setter for the TelemoreSize parameter
738 * @param telomereSize Telemore Size
739 */
740 public void setTelomereSize(int telomereSize) {
741 this.telomereSize = telomereSize;
742 }

Page 10

CellCom

743
744 /**
745 * Setter for the WorldXSize parameter
746 * @param worldXSize Word X size
747 */
748 public void setWorldXSize(int worldXSize) {
749 this.worldXSize = worldXSize;
750 }
751
752 /**
753 * Setter for the WorldYSize parameter
754 * @param worldYSize World Y Size
755 */
756 public void setWorldYSize(int worldYSize) {
757 this.worldYSize = worldYSize;
758 }
759
760 /**
761 * Setter for the VascularNutrients Parameter
762 * @param VascularNutrients Vascular Concentration parameter
763 */
764 public void setVascularNutrients(double VascularNutrients) {
765 this.VascularNutrients = VascularNutrients;
766 }
767
768 /**
769 * Getter for the VascularNutrients Parameter
770 * @return Vascular Nutrients Parameter Concentration
771 */
772 public double getVascularNutrients() {
773 return VascularNutrients;
774 }
775
776 /**
777 * Getter for the ProbNormalGeneMutation Parameter
778 * @return Probability
779 */
780 public double getProbNormalGeneMutation() {
781 return probNormalGeneMutation;
782 }
783
784 /**
785 * Setter for the ProbNormalGeneMutation Parameter
786 * @param probNormalGeneMutation Probability
787 */
788 public void setProbNormalGeneMutation(double probNormalGeneMutation) {
789 this.probNormalGeneMutation = probNormalGeneMutation;
790 }
791
792 /**
793 * Setter for the ResidualApoptosisProbability parameter
794 * @param residualApoptosisProbability Probability
795 */
796 public void setResidualApoptosisProbability(double residualApoptosisProbability) {
797 this.residualApoptosisProbability = residualApoptosisProbability;
798 }
799
800 /**
801 * Getter for the ResidualApoptosisProbability Parameter
802 * @return Probability
803 */
804 public double getResidualApoptosisProbability() {
805 return residualApoptosisProbability;
806 }
807
808 /**
809 * Main method. Called when simulation is ran.
810 * @param args the command line arguments
811 */
812 public static void main(String[] args) {
813 // TODO code application logic here
814 // System.out.println("main()");
815 SimInit init = new SimInit();
816 Model model = new Model();
817 init.loadModel(model, "", false);
818 }

Page 11

CellCom

819
820
821
822 }
823

Page 12

CellCom

 1 /*
 2 * Cell.java
 3 *
 4 * Created on May 18, 2007, 4:46 PM
 5 *
 6 */
 7
 8 package cellcom;
 9
 10 import java.awt.Color;
 11 import java.util.Vector;
 12 import uchicago.src.sim.gui.Drawable;
 13 import uchicago.src.sim.gui.SimGraphics;
 14
 15 /**
 16 * Cell Class.
 17 * @author David Rodrigues
 18 */
 19 public class Cell implements Drawable {
 20 // Mutations that a Ceel can Undergo
 21 /**
 22 * Defines de state of the gene <I>Growth Signal</I>
 23 */
 24 public boolean growthSignal=false;
 25 /**
 26 * Defines the state of the gene <I>Sustained Angiogenisis</I>
 27 */
 28 public boolean sustaindedAgiogenisi=false;
 29 /**
 30 * Defines the state of the gene <I>Ignore Growth Inhibitor</I>
 31 */
 32 public boolean ignoreGrowthInhibit=false;
 33 /**
 34 * Defines the State <I>Evade Apoptosis</I>
 35 */
 36 public boolean evadeApoptosis=false;
 37 /**
 38 * Defines the State of the gene mutation <I>Limitless Replication</i>
 39 */
 40 public boolean limitlessReplication=false;
 41
 42 /**
 43 * Defines the state of the mutation <I>Genetic Instability</i>
 44 */
 45 public boolean geneticInstability=false;
 46 /**
 47 * Vector of the genome of the
 48 */
 49 public int[] genome={0,0,0,0,0,0};
 50 /**
 51 * Vector of the Genome to use during the Cell life-cycle
 52 */
 53 public int[] genomeDaughter={0,0,0,0,0,0};
 54 private int x;
 55 private int y;
 56 private Color cor;
 57 private Model modelo;
 58 /**
 59 * Indicates the fase the cell is in
 60 */
 61 public int fase=2;
 62 private int faseG1hold;
 63 int telomeres;
 64 String who="Cell ";
 65 /**
 66 * The Value of pH at which the cells dies due to acidity
 67 */
 68 public double pHDeath=6.8;
 69 /**
 70 * Defines the pH below which the cell enters a quiscent state
 71 */
 72 public double pHQuisc=7.1;
 73 /**
 74 * Defines the lowest level the nutrients can have before making the cell die.
 75 */
 76 public double nutThreshold=2.5;

Page 1

CellCom

 77 /**
 78 * The rate of consumption of Nutrients
 79 */
 80 public double kRate=0.01;
 81 /**
 82 * The rate of production of Acid
 83 */
 84 public double hRate=0.1;
 85
 86 /* Fases do ciclo de vida da Célula
 87 * 1 - G0 a célula não tenta dividir-se
 88 * 2 - G1
 89 * 3 - S - Sintese de novo DNA
 90 * 4 - G2 Ponto de verificação genética.
 91 * 5 - M
 92 */
 93
 94
 95 /**
 96 * Creates a new instance of Cell
 97 * @param modelo Reference to the main mode in which the cell is running.
 98 */
 99 public Cell(Model modelo) {
100 this.modelo=modelo;
101 this.telomeres=modelo.getTelomereSize();
102 this.who+=modelo.cellNumber++;
103 }
104
105 /**
106 * method to draw the cells in the repast display
107 * @param g the SimGraphics that defines how the object will be drawn in the
display.
108 */
109 public void draw(SimGraphics g) {
110 int soma=0;
111 for (int i = 0; i < genome.length; i++) {
112 soma+=genome[i];
113 }
114
115 if (soma < genome.length){
116 this.cor=new Color(100+(155/genome.length)*soma,100,100);
117 } else {
118 this.cor=new Color(0,0,255);
119 }
120
121
122 if (this.cor==null){
123 this.cor = Color.DARK_GRAY;
124 }
125
126
127 g.drawRect(this.cor);
128 }
129
130 /**
131 * Get the X position of the cell in the Cell Space
132 * @return Returns th XX coordinates
133 */
134 public int getX() {
135 return this.x;
136 }
137
138 /**
139 * Get the X position of the cell in the Cell Space
140 * @return Returns the YY coordinates
141 */
142 public int getY() {
143 return this.y;
144 }
145 /**
146 * Sets the XX and YY coordinates of the Cell
147 * @param x The X coord.
148 * @param y The Y coord.
149 */
150 public void setXY(int x, int y){
151 this.x=x;

Page 2

CellCom

152 this.y=y;
153 }
154
155 /**
156 * Sequence that executes the cell step at each tick in the simulation
157 */
158 public void step(){
159
160
161
162
163 // Check Acidity
164 if (!checkAcidity()){
165 enterApoptosis();
166 return;
167 }
168
169
170 // System.out.println("step ");
171 if (this.telomeres<=0){
172 enterApoptosis();
173 return;
174 }
175
176 // Check Nutrients
177 if (!checkNutrients()){
178 return;
179 }
180
181
182
183 // Consume Nutrients and Produce Acid
184 consumeNutrients();
185
186
187
188 enterG0Fase();
189
190
191 if (this.fase!=1){
192
193 enterG1fase();
194
195 enterSFase();
196
197 if (enterG2fase()){
198
199 enterMFase();
200 }
201
202 }
203
204
205 // Residual Apoptosis Probability...
206 if (Math.random()<modelo.getResidualApoptosisProbability()){
207 enterApoptosis();
208 return;
209 }
210 }
211
212 /**
213 * Checks if the acidity in the Cell position is abobe the minimum threshold
214 * @return True if Acidity is above minimum
215 */
216 public boolean checkAcidity(){
217
218 this.pHDeath=6.8;
219 if (this.getGenome()==6){
220 this.pHDeath=6.0;
221 }
222
223
224 Acid a=(Acid)modelo.acidSpace.getObjectAt(this.x,this.y);
225
226 if (a.getPH()<this.pHDeath){
227 return false;

Page 3

CellCom

228 }
229
230 return true;
231
232 }
233
234 /**
235 * Checks the nutrient space to see if the value is above a minimum threshold
236 * Induces Apoptosis if necessary and sets the fase variable.
237 * @return Return True or False
238 */
239 public boolean checkNutrients(){
240 boolean out=true;
241 double nutHere=((Double)modelo.nutrienteSpace.getValueAt(x,y)).doubleValue();
242
243 if (nutHere<this.nutThreshold){
244 // XXXX Alterar este Valor de threshold Minimo...
245 if (sustaindedAgiogenisi){
246 induceAngiogenesis();
247 out=true;
248 } else {
249 enterApoptosis();
250 this.fase=1;
251 out=false;
252 }
253 }
254 return out;
255 }
256
257 public void consumeNutrients(){
258
259
260 // Nutrients
261 double nutHere=((Double)modelo.nutrienteSpace.getValueAt(x,y)).doubleValue();
262
263 this.kRate=0.01;
264 if (this.isCancer(this)){
265 this.kRate=10*this.kRate;
266 }
267
268 double nutConsumed=this.kRate;
269
270 // System.out.println(nutHere);
271 nutConsumed=nutHere*Math.exp(-1*nutConsumed);
272 // System.out.println(nutConsumed);
273 modelo.nutrienteSpace.putValueAt(x,y,nutConsumed);
274
275 // Acid Production only if there's mutation
276
277 if (getGenome()==6){
278 Acid a = (Acid)modelo.acidSpace.getObjectAt(this.x,this.y);
279 double acidHere=a.getConcH();
280 // System.out.println(acidHere);
281
282 acidHere=acidHere*Math.exp(this.hRate);
283 // System.out.println(acidHere);
284 a.setConcH(acidHere);
285 }
286
287 }
288
289 /* --
Cell Life Cycle
290 * G0 | G1 S G2 M
291 *
292 */
293 public void enterG0Fase(){
294 this.pHQuisc=7.1;
295 if (this.getGenome()==6){
296 this.pHQuisc=6.4;
297 }
298
299 Acid a=(Acid)modelo.acidSpace.getObjectAt(this.x,this.y);
300
301 if (a.getPH()<this.pHQuisc){
302 this.fase=1;

Page 4

CellCom

303 }
304
305 if (ignoreGrowthInhibit){
306 this.fase=0;
307 return;
308 }
309
310 Vector viz = modelo.cellSpace.getMooreNeighbors(this.x,this.y,false);
311 if (viz.size()==8){
312 this.fase=1;
313 } else {
314 this.fase=0;
315 }
316 }
317 public void enterG1fase(){
318 // XXXX Fase de Espera da Céula... Provavelmente não é para implementar...
319 this.fase=2;
320 }
321 public void enterSFase(){
322 //Sintetizar o genoma de uma filha com probabilidade de mutação...
323 this.fase=3;
324 genomeDaughter=genome;
325 for (int i = 0; i < genomeDaughter.length; i++) {
326 if (genomeDaughter[i]==0){
327 if (geneticInstability){
328 // System.out.println("Genetic Instability");
329 if (Math.random()< modelo.probNormalGeneMutation*modelo.
multIncreaseGeneMutation){
330 genomeDaughter[i]=1;
331 }
332 } else {
333 if (Math.random()< modelo.probNormalGeneMutation){
334 genomeDaughter[i]=1;
335 }
336 }
337 }
338 }
339 if (!limitlessReplication){
340 this.telomeres--;
341 // System.out.println(this.who+": telemerer shortenning");
342 }
343 }
344 public boolean enterG2fase(){
345 // XXX Verifica se encontra células cancerigenas e marca-as para Apoptose...
346 this.fase=4;
347
348 boolean killThis=false;
349 if (!evadeApoptosis){
350 for (int i = 0; i < genomeDaughter.length; i++) {
351 if (Math.random()<modelo.getProbDetectionDamageCells()){
352 if (genomeDaughter[i]==1){
353 killThis=true;
354 }
355 }
356 }
357 }
358 if (killThis){
359 this.enterApoptosis();
360 }
361 return !killThis;
362 }
363 public void enterMFase(){
364 // Uma nova célula
365 this.fase=5;
366 Cell a = new Cell(modelo);
367 a.genome=this.genomeDaughter.clone();
368 a.setBoleanGenes();
369
370 int nx=this.x+(int)(Math.random()*3)-1;
371 int ny=this.y+(int)(Math.random()*3)-1;
372 nx = (nx + modelo.getWorldXSize()) % modelo.getWorldXSize();
373 ny = (ny + modelo.getWorldYSize()) % modelo.getWorldYSize();
374
375 if (!ignoreGrowthInhibit){
376 while(modelo.cellSpace.getObjectAt(nx,ny)!=null){
377 nx=this.x+(int)(Math.random()*3)-1;

Page 5

CellCom

378 ny=this.y+(int)(Math.random()*3)-1;
379 nx = (nx + modelo.getWorldXSize()) % modelo.getWorldXSize();
380 ny = (ny + modelo.getWorldYSize()) % modelo.getWorldYSize();
381 }
382 a.setXY(nx,ny);
383 modelo.cellSpace.putObjectAt(nx,ny,a);
384 modelo.cells.add(a);
385 this.genome=this.genomeDaughter.clone();
386
387 } else {
388 //XXX Probability of Success..
389 if (modelo.cellSpace.getObjectAt(nx,ny)!=null){
390 if (Math.random()<modelo.getProbCompeteNeighboor()){
391 Cell b = (Cell)modelo.cellSpace.getObjectAt(nx,ny);
392 b.enterApoptosis();
393 a.setXY(nx,ny);
394 modelo.cellSpace.putObjectAt(nx,ny,a);
395 modelo.cells.add(a);
396 this.genome=this.genomeDaughter.clone();
397 } else {
398
399 }
400 } else {
401 a.setXY(nx,ny);
402 modelo.cellSpace.putObjectAt(nx,ny,a);
403 modelo.cells.add(a);
404 this.genome=this.genomeDaughter.clone();
405 }
406 }
407 }
408
409
410 public void enterApoptosis(){
411 // Eventualmente isto poderá ser feito no Model...
412 modelo.cells.remove(this);
413 modelo.cellSpace.putObjectAt(this.x,this.y,null);
414 // System.out.println("Killed "+this.who);
415 }
416 public void induceAngiogenesis(){
417 //XXX
418 Vascular vi = null;
419 double distv = modelo.getWorldXSize()*2;
420 double dist = 0.0;
421 for (int i = 0; i < modelo.vascular.size(); i++) {
422 Vascular v = (Vascular)modelo.vascular.get(i);
423 dist = Math.sqrt(Math.pow((v.getX()-this.x),2)+Math.pow((v.getY()-this.y),
2));
424 if (dist<distv){
425 distv=dist;
426 vi=v;
427 }
428 }
429 vi.callVascular(this);
430
431 // System.out.println(dist);
432 }
433 public boolean isCancer(Cell c){
434 int soma=0;
435 boolean out=false;
436 for (int i = 0; i < c.genome.length; i++) {
437 soma+=c.genome[i];
438 }
439 if (soma==c.genome.length){
440 out=true;
441 }
442 return out;
443 }
444 public void setBoleanGenes(){
445 if (genome[0]==1){
446 this.growthSignal=true;
447 }
448 if (genome[1]==1){
449 this.sustaindedAgiogenisi=true;
450 }
451 if (genome[2]==1){
452 this.ignoreGrowthInhibit=true;

Page 6

CellCom

453 }
454 if (genome[3]==1){
455 this.evadeApoptosis=true;
456 }
457 if (genome[4]==1){
458 this.limitlessReplication=true;
459 }
460 if (genome[5]==1){
461 this.geneticInstability=true;
462 }
463 }
464 /* Ideias para o Step de Vida de Cada Célula...
465 *
466 * O sistema Vascular poderá ser o responsável por colocar a quantidade de
467 * nutrientes certa em cada célula.
468 * Para isso cria-se um espaço para Nutrientes...
469 * E numa vizinhaça de Moore X faz-se a actualização... dos níveis de nutrientes
470 * até um nível considerado máximo... o decaimento será exponêncial por
471 * exemplo colocando o nível a metade...
472 * é preciso verificar se no nível
473 */
474 /* Setter And Getters
475 */
476
477 public int getFase() {
478 return fase;
479 }
480
481 public int getGenome() {
482 int soma = 0;
483 for (int i = 0; i < genome.length; i++) {
484 soma+=genome[i];
485 }
486 return soma;
487 }
488
489 public boolean isEvadeApoptosis() {
490 return evadeApoptosis;
491 }
492
493 public boolean isGeneticInstability() {
494 return geneticInstability;
495 }
496
497 public boolean isGrowthSignal() {
498 return growthSignal;
499 }
500
501 public boolean isIgnoreGrowthInhibit() {
502 return ignoreGrowthInhibit;
503 }
504
505 public boolean isLimitlessReplication() {
506 return limitlessReplication;
507 }
508
509 public boolean isSustaindedAgiogenisi() {
510 return sustaindedAgiogenisi;
511 }
512
513 public int getTelomeres() {
514 return telomeres;
515 }
516
517 public String getWho() {
518 return who;
519 }
520
521 }
522

Page 7

CellCom

 1 /*
 2 * Acid.java
 3 *
 4 * Created on May 28, 2007, 4:20 PM
 5 *
 6 */
 7
 8 package cellcom;
 9
 10 import java.awt.Color;
 11 import uchicago.src.sim.gui.Drawable;
 12 import uchicago.src.sim.gui.SimGraphics;
 13
 14 /**
 15 * Class for the Acid Space
 16 * @author David Rodrigues
 17 */
 18 public class Acid implements Drawable {
 19 int x;
 20 int y;
 21 private Model modelo;
 22 private double concH;
 23 private double nextConcH;
 24 private Color cor;
 25
 26 /**
 27 * Creates a new instance of Acid
 28 * @param modelo Reference to the model this class is in.
 29 */
 30 public Acid(Model modelo) {
 31 this.modelo=modelo;
 32 }
 33
 34
 35 /**
 36 * Sets the XX and YY coordinates of the Class.
 37 * @param i X coord.
 38 * @param j Y coord.
 39 */
 40 public void setXY(int i, int j) {
 41 this.x=i;
 42 this.y=j;
 43 }
 44
 45 /**
 46 * Draw method called by repast to make the representatio of the class in the
display
 47 * @param g SimGraphics object that will draw this class in the Display
 48 */
 49 public void draw(SimGraphics g) {
 50 if (getPH()<6.0){
 51 this.cor=new Color(100,168,242,0);
 52 } else if (getPH()>7.4){
 53 this.cor=new Color(100,168,242,127);
 54 } else {
 55 this.cor=new Color(100,168,242,(int)((getPH()-6.0)*90));
 56 }
 57
 58
 59 g.drawFastRect(cor);
 60 }
 61
 62 /**
 63 * Getter for the Acid XX coordinate
 64 * @return XX coord.
 65 */
 66 public int getX() {
 67 return this.x;
 68 }
 69
 70 /**
 71 * Getter for the YY coordinate for this Acid Class
 72 * @return YY Coord.
 73 */
 74 public int getY() {
 75 return this.y;

Page 1

CellCom

 76 }
 77 /**
 78 * Calculates and returns the pH at this Acid Class X,Y
 79 * @return pH
 80 */
 81 public double getPH(){
 82 return -1*Math.log10(this.concH);
 83 }
 84 /**
 85 * Set the concentration of acid in this lattice location
 86 * @param pH pH
 87 */
 88 public void setPH(double pH){
 89 this.concH=Math.pow(10, -1*pH);
 90 }
 91
 92 /**
 93 * gets the concentration of Acid
 94 * @return Acid conentration in mol/L
 95 */
 96 public double getConcH() {
 97 return concH;
 98 }
 99
100 /**
101 * Sets Acid Concentration
102 * @param concH Acid Concentration in mol/L
103 */
104 public void setConcH(double concH) {
105 this.concH = concH;
106 }
107
108 /**
109 * Set the concentration of Acid for the diffusion process
110 * @param nextConcH Acid concentration in mol/L
111 */
112 public void setNextConcH(double nextConcH) {
113 this.nextConcH = nextConcH;
114 }
115
116 /**
117 * Getter for the Acid concentration in the diffusion mechanism
118 * @return Acid Concemtration in mol/L
119 */
120 public double getNextConcH() {
121 return nextConcH;
122 }
123
124 }
125

Page 2

CellCom

 1 /*
 2 * MoleculeSpace.java
 3 *
 4 * Created on May 21, 2007, 10:02 PM
 5 *
 6 */
 7
 8 package cellcom;
 9
 10 import java.awt.Color;
 11 import uchicago.src.sim.gui.Drawable;
 12 import uchicago.src.sim.gui.SimGraphics;
 13
 14 /**
 15 * Class that holds the methods to draw the nutrients Space
 16 * @author David Rodrigues
 17 */
 18 public class MoleculeSpace implements Drawable {
 19
 20 // Melcular Space Will Hold quantities that need to be avaiable to all cells
 21 /**
 22 * Nutrients concentration
 23 */
 24 public double nutrients=0.0;
 25 /**
 26 * Growth Factor Concentration
 27 */
 28 public double cellGrowhtFactor=0.0;
 29 /**
 30 * Vascular Growth Factor Concentration
 31 */
 32 public double vascularGrowthFactor=0.0;
 33 /**
 34 * Acid Concentration
 35 */
 36 public double concHydrogen=0.0;
 37 /**
 38 * Growth Inhibitors Concentration
 39 */
 40 public double inhibitors=0.0;
 41 /**
 42 * X position on the lattice
 43 */
 44 public int x;
 45 /**
 46 * Y position in the lattice
 47 */
 48 public int y;
 49 private Model modelo;
 50 private String who="Nutrients";
 51
 52 /**
 53 * Creates a new instance of MoleculeSpace
 54 * @param modelo Reference to the model that holds this class.
 55 */
 56 public MoleculeSpace(Model modelo) {
 57 this.modelo=modelo;
 58 }
 59
 60 /**
 61 * Set the X and Y coordinte for this class
 62 * @param i X coord.
 63 * @param j Y Coord.
 64 */
 65 public void setXY(int i, int j) {
 66 this.x=i;
 67 this.y=j;
 68 }
 69
 70 /**
 71 * Method to draw the nutrients in the display
 72 * @param g SimGraphics object that defines how this class is drawn in the display
 73 */
 74 public void draw(SimGraphics g) {
 75 float nut = (float)(((Double)modelo.nutrienteSpace.getValueAt(this.x,this.y)).
doubleValue());

Page 1

CellCom

 76 nut = 2*nut / (float)modelo.getVascularNutrients();
 77 if (nut > 1){
 78 nut=1;
 79 }
 80 Color cor = new Color(nut / 2, nut, nut / 2, (float)0.5);
 81 g.drawFastRect(cor);
 82 }
 83
 84 /**
 85 * Getter for the X position
 86 * @return X Coord.
 87 */
 88 public int getX() {
 89 return this.x;
 90 }
 91
 92 /**
 93 * Getter for the Y position of this class
 94 * @return Y coord.
 95 */
 96 public int getY() {
 97 return this.y;
 98 }
 99
100 /**
101 * Unique Id of this class
102 * @return ID of the class
103 */
104 public String getWho() {
105 return who;
106 }
107
108 /**
109 * Getter for the nutrients concentrations
110 * @return Nutrients concentration
111 */
112 public double getNutrients() {
113 return ((Double)modelo.nutrienteSpace.getValueAt(this.x,this.y)).doubleValue();
114 }
115
116 }
117

Page 2

CellCom

 1 /*
 2 * Vascular.java
 3 *
 4 * Created on May 18, 2007, 4:52 PM
 5 *
 6 */
 7
 8 package cellcom;
 9
 10 import java.awt.Color;
 11 import java.util.Vector;
 12 import uchicago.src.sim.gui.Drawable;
 13 import uchicago.src.sim.gui.SimGraphics;
 14
 15 /**
 16 * Vascular System Class
 17 * @author David Rodrigues
 18 */
 19 public class Vascular implements Drawable {
 20 private int x;
 21 private int y;
 22 private Color cor;
 23 private Model modelo;
 24 private String who="Vascular ";
 25
 26 /**
 27 * Creates a new instance of Vascular
 28 * @param modelo Reference to the model that is running
 29 */
 30 public Vascular(Model modelo) {
 31 this.cor = Color.RED;
 32 this.modelo=modelo;
 33 this.who+=modelo.vascularNumber++;
 34 }
 35 /**
 36 * Creates a new Vascular in the direction of the Calling Cell
 37 * @param c Calling Cell
 38 */
 39 public void callVascular(Cell c){
 40 // System.out.println("callVascular");
 41 double dx = c.getX() - this.x;
 42 double dy = c.getY() - this.y;
 43 double teta= Math.atan2(dy,dx);
 44 double ang = Math.PI / 8;
 45 int nx=0;
 46 int ny=0;
 47 if (teta > 5 * ang || teta < -5 * ang){
 48 nx=-1;
 49 }
 50 if (teta < 3 * ang && teta > -3 * ang){
 51 nx=+1;
 52 }
 53 if (teta > -7 * ang && teta < -1 * ang){
 54 ny=-1;
 55 }
 56 if (teta < 7 * ang && teta > 1 * ang){
 57 ny=+1;
 58 }
 59 // System.out.println(nx+","+ny);
 60 Vascular b = new Vascular(modelo);
 61 if (modelo.vascularSpace.getObjectAt(this.x+nx,this.y+ny)==null &&
 62 modelo.vascularSpace.getMooreNeighbors(this.x+nx,this.y+ny,false).size()
<=1){
 63
 64 b.setXY(this.x+nx, this.y+ny);
 65
 66 modelo.vascularSpace.putObjectAt(this.x+nx,this.y+ny,b);
 67 modelo.vascular.add(b);
 68 //b.diffuseNutrients();
 69 // modelo.diffuseNutrients();
 70 }
 71
 72
 73
 74 // System.out.println(teta);
 75 }

Page 1

CellCom

 76
 77 /**
 78 * repast method to draw the Vascular system
 79 * @param g Defines the type of graph to draw in the display for the vascular
system.
 80 */
 81 public void draw(SimGraphics g) {
 82
 83 g.drawHollowFastOval(this.cor);
 84 cor=new Color(255,0,0,170);
 85
 86 g.drawFastRect(cor);
 87
 88 }
 89
 90 /**
 91 * Getter for the XX coordinates of this Vascular Cell in the Vascular Space
 92 * @return XX coordinates
 93 */
 94 public int getX() {
 95 return this.x;
 96 }
 97
 98 /**
 99 * Getter for the YY coordinates of this Vascular Cell in the Vascular Space
100 * @return YY coordinates
101 */
102 public int getY() {
103 return this.y;
104 }
105 /**
106 * Sets the XX and YY coordinates for the Vascular Cell
107 * @param x X coord.
108 * @param y Y coord.
109 */
110 public void setXY(int x, int y){
111 this.x=x;
112 this.y=y;
113 }
114 /**
115 * Set a value for the nutrients in a determined nutrient space
116 * @param nut The value to put in this cell
117 */
118 public void diffuseNutrients(double nut){
119 modelo.nutrienteSpace.putValueAt(this.x,this.y,nut);
120 }
121
122 /**
123 * Getter for the id of the Vascular cell
124 * @return The ID of the Vascular Cell
125 */
126 public String getWho() {
127 return who;
128 }
129
130 }
131

Page 2

